RESUMO
Pleurogenoides japonicus (Trematoda: Microphalloidea) is an important parasite in wood frogs with high infection rates and significant ecological, economic, and societal importance. The scarcity of molecular data for these parasites severely limits population genetics and phylogenetic studies. In the present study, for the first time, we determined and described the entire mitochondrial (mt) genome of P. japonicus as the first representative of the family Pleurogenidae. The entire mt genome of P. japonicus was circular, with 15,043 bp (GenBank accession number OR900118), containing 36 genes, comprising 12 protein-coding genes (cox1-3, nad1-6, nad4L, cytb, and atp6), two ribosomal RNA genes, 22 transfer RNA genes, and two non-coding regions. There were 23 intergenic spacers, ranging from 2 to 162 bp, and only one 40 bp overlap between nad4L and nad4 genes in the P. japonicus mt genome. The nucleotide composition of P. japonicus mt genome exhibited a strong AT bias with a 63.75% A + T content, while the AT- and GC-skews were - 0.435 and 0.407, respectively. Comparative analysis demonstrated that the P. japonicus mt genome shared the most common characteristics with Microphalloidea trematodes, and the cox1 gene was the longest and most conserved gene in Microphalloidea trematodes. The gene arrangements of Xiphidiata trematodes were of the same order based on protein-coding genes and rRNA genes, except for tRNA. More than two gene arrangement types exist in Echinostomata and Xiphidiata, and the gene rearrangement events mainly occurred in "trnE-trnG" and "trnG-trnE". Phylogenetic analysis suggested that trematodes of the family Pleurogenidae clustered more with Prosthogonimidae than Eucotylidae. The mt genome data of P. japonicus provide an accurate genetic marker for further studies of Xiphidiata trematodes.
RESUMO
Importance: Viral encephalitis is one of the main causes of the perisylvian syndrome, which can cause damage to children's language-speech, feeding, and swallowing functions. Comprehensive assessment of language-speech and swallowing function and comorbidity research on these children will help children's rehabilitation workers to better understand the disease and strengthen the systematic management of comorbid disorders. Objective: To describe speech and language pathology and the occurrence of comorbid disorders in children with perisylvian syndrome induced by viral encephalitis. Methods: Twenty-two children with acquired perisylvian syndrome were recruited in this study. Language and speech functions, including oral motor function, swallowing function, language ability, and dysarthria were assessed in these patients. Craniocerebral magnetic resonance imaging (MRI), electroencephalogram examination, and intelligence evaluation were performed to determine brain lesions and comorbid disorders. Results: All children exhibited different degrees of oral movement, dysphagia, and speech and language disorders. There was a significant difference between expressive and receptive language ability (P < 0.05). There were 10, 8, and 12 children who had an intellectual disability, limb disability, and epilepsy, respectively. In addition to the damage of the peri-tegmental cortex found in MRI, thalamus lesions occurred in 19 cases and white matter involvement in six cases. Interpretation: Children with acquired perisylvian syndrome caused by viral encephalitis are characterized by persistent pseudobulbar dysfunction, speech and language impairment, and orofacial diplegia. They have a high probability of secondary epilepsy and are prone to motor and cognitive impairment, which need systematic management.
RESUMO
3',5'-cyclic uridine monophosphate (cUMP) and 3',5'-cyclic cytidine monophosphate (cCMP) have been established as bacterial second messengers in the phage defense system, named pyrimidine cyclase system for anti-phage resistance (Pycsar). This system consists of a pyrimidine cyclase and a cyclic pyrimidine receptor protein. However, the molecular mechanism underlying cyclic pyrimidine synthesis and recognition remains unclear. Herein, we determine the crystal structures of a uridylate cyclase and a cytidylate cyclase, revealing the conserved residues for cUMP and cCMP production, respectively. In addition, a distinct zinc-finger motif of the uridylate cyclase is identified to confer substantial resistance against phage infections. Furthermore, structural characterization of cUMP receptor protein PycTIR provides clear picture of specific cUMP recognition and identifies a conserved N-terminal extension that mediates PycTIR oligomerization and activation. Overall, our results contribute to the understanding of cyclic pyrimidine-mediated bacterial defense.
Assuntos
Pirimidinas , Pirimidinas/química , Pirimidinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Bacteriófagos/metabolismo , Uridina Monofosfato/metabolismo , Uridina Monofosfato/química , Escherichia coli/metabolismo , Escherichia coli/genética , Modelos Moleculares , Sequência de Aminoácidos , Dedos de ZincoRESUMO
Objective: To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We designed, developed, and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection. The precision of the liquid transfer and temperature control was tested. A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction (RT-PCR). The entire process, from SARS-CoV-2 nucleic acid extraction to amplification, was evaluated. Results: The precision of the syringe transfer volume was 19.2 ± 1.9 µL (set value was 20), 32.2 ± 1.6 (set value was 30), and 57.2 ± 3.5 (set value was 60). Temperature control in the amplification tube was measured at 60.0 ± 0.0 °C (set value was 60) and 95.1 ± 0.2 °C (set value was 95) respectively. SARS-Cov-2 nucleic acid extraction yield through the device was 7.10 × 10 6 copies/mL, while a commercial kit yielded 2.98 × 10 6 copies/mL. The mean time to complete the entire assay, from SARS-CoV-2 nucleic acid extraction to amplification detection, was 36 min and 45 s. The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL. Conclusion: The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test (POCT).
Assuntos
COVID-19 , Equipamentos Descartáveis , RNA Viral , SARS-CoV-2 , SARS-CoV-2/isolamento & purificação , COVID-19/diagnóstico , COVID-19/virologia , Humanos , RNA Viral/isolamento & purificação , RNA Viral/análise , Teste de Ácido Nucleico para COVID-19/instrumentação , Teste de Ácido Nucleico para COVID-19/métodos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/instrumentaçãoRESUMO
Extracellular vesicles are essential for intercellular communication and are involved in tumor progression. Inhibiting the direct release of extracellular vesicles seems to be an effective strategy in inhibiting tumor progression, but lacks of investigation. Here, we report a natural flavonoid compound, apigenin, could significantly inhibit the growth of hepatocellular carcinoma by preventing microvesicle secretion. Mechanistically, apigenin primarily targets the guanine nucleotide exchange factor ARHGEF1, inhibiting the activity of small G protein Cdc42, which is essential in regulating the release of microvesicles from tumor cells. In turn, this inhibits tumor angiogenesis related to VEGF90K transported on microvesicles, ultimately impeding tumor progression. Collectively, these findings highlight the therapeutic potential of apigenin and shed light on its anticancer mechanisms through inhibiting microvesicle biogenesis, providing a solid foundation for the refinement and practical application of apigenin.
Assuntos
Apigenina , Carcinoma Hepatocelular , Micropartículas Derivadas de Células , Neoplasias Hepáticas , Neovascularização Patológica , Fatores de Troca de Nucleotídeo Guanina Rho , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Animais , Apigenina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/irrigação sanguínea , Camundongos , Linhagem Celular Tumoral , Proteína cdc42 de Ligação ao GTP/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Hep G2 , Camundongos Nus , AngiogêneseRESUMO
Crytosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are important diarrheal pathogens with a global distribution that threatens the health of humans and animals. Despite cattle being potential transmission hosts of these protozoans, the associated risks to public health have been neglected. In the present study, a total of 1155 cattle fecal samples were collected from 13 administrative regions of Heilongjiang Province. The prevalence of Cryptosporidium spp., G. duodenalis, and E. bieneusi were 5.5% (64/1155; 95% CI: 4.2-6.9), 3.8% (44/1155; 95% CI: 2.7-4.9), and 6.5% (75/1155; 95% CI: 5.1-7.9), respectively. Among these positive fecal samples, five Cryptosporidium species (C. andersoni, C. bovis, C. ryanae, C. parvum, and C. occultus), two G. duodenalis assemblages (E and A), and eight E. bieneusi genotypes (BEB4, BEB6, BEB8, J, I, CHS7, CHS8, and COS-I) were identified. Phylogenetic analysis showed that all eight genotypes of E. bieneusi identified in the present study belonged to group 2. It is worth noting that some species/genotypes of these intestinal protozoans are zoonotic, suggesting a risk of zoonotic disease transmission in endemic areas. The findings expanded our understanding of the genetic composition and zoonotic potential of Cryptosporidium spp., G. duodenalis, and E. bieneusi in cattle in Heilongjiang Province.
RESUMO
BACKGROUND: Studies on various thrombopoietic agents for cancer treatment-induced thrombocytopenia (CTIT) in China are lacking. This study aimed to provide detailed clinical profiles to understand the outcomes and safety of different CTIT treatment regimens. METHODS: In this retrospective, cross-sectional study, 1664 questionnaires were collected from 33 hospitals between March 1 and July 1, 2021. Patients aged >18 years were enrolled who were diagnosed with CTIT and treated with recombinant interleukin 11 (rhIL-11), recombinant thrombopoietin (rhTPO), or a thrombopoietin receptor agonist (TPO-RA). The outcomes, compliance, and safety of different treatments were analyzed. RESULTS: Among the 1437 analyzable cases, most patients were treated with either rhTPO alone (49.3%) or rhIL-11 alone (27.0%). The most common combination regimen used was rhTPO and rhIL-11 (10.9%). Platelet transfusions were received by 117 cases (8.1%). In multivariate analysis, rhTPO was associated with a significantly lower proportion of platelet recovery, platelet transfusion, and hospitalization due to chemotherapy-induced thrombocytopenia (CIT) than rhIL-11 alone. No significant difference was observed in the time taken to achieve a platelet count of >100 × 109/L and chemotherapy dose reduction due to CIT among the different thrombopoietic agents. The outcomes of thrombocytopenia in 170 patients who received targeted therapy and/or immunotherapy are also summarized. The results show that the proportion of platelet recovery was similar among the different thrombopoietic agents. No new safety signals related to thrombopoietic agents were observed in this study. A higher proportion of physicians preferred to continue treatment with TPO-RA alone than with rhTPO and rhIL-11. CONCLUSIONS: This survey provides an overview of CTIT and the application of various thrombopoietic agents throughout China. Comparison of monotherapy with rhIL-11, rhTPO, and TPO-RA requires further randomized clinical trials. The appropriate application for thrombopoietic agents should depend on the pretreatment of platelets, treatment variables, and risk of bleeding. PLAIN LANGUAGE SUMMARY: To provide an overview of the outcome of cancer treatment-induced thrombocytopenia in China, our cross-sectional study analyzed 1437 cases treated with different thrombopoietic agents. Most of the patients were treated with recombinant interleukin 11 (rhIL-11) and recombinant thrombopoietin (rhTPO). rhTPO was associated with a significantly lower proportion of platelet recovery and platelet transfusion compared with rhIL-11.
Assuntos
Neoplasias , Trombocitopenia , Humanos , China , Estudos Transversais , Interleucina-11/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Estudos Retrospectivos , Trombocitopenia/induzido quimicamente , Trombocitopenia/tratamento farmacológico , Trombopoetina/uso terapêutico , Adulto Jovem , AdultoRESUMO
Background: Coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) are closely related. The function of immunocytes in the pathogenesis of CAD and T2DM has not been extensively studied. The quantitative bioinformatics analysis of the public RNA sequencing database was applied to study the key genes that mediate both CAD and T2DM. The biological characteristics of associated key genes and mechanism of CD8+ T and NK cells in CAD and T2DM are our research focus. Methods: With expression profiles of GSE66360 and GSE78721 from the Gene Expression Omnibus (GEO) database, we identified core modules associated with gene co-expression relationships and up-regulated genes in CAD and T2DM using Weighted Gene Co-expression Network Analysis (WGCNA) and the 'limma' software package. The enriched pathways of the candidate hub genes were then explored using GO, KEGG and GSEA in conjunction with the immune gene set (from the MSigDB database). A diagnostic model was constructed using logistic regression analysis composed of candidate hub genes in CAD and T2DM. Univariate Cox regression analysis revealed hazard ratios (HRs), 95% confidence intervals (CIs), and p-values for candidate hub genes in diagnostic model, while CIBERSORT and immune infiltration were used to assess the immune microenvironment. Finally, monocytes from peripheral blood samples and their immune cell ratios were analyzed by flow cytometry to validate our findings. Results: Sixteen candidate hub genes were identified as being correlated with immune infiltration. Univariate Cox regression analysis revealed that NPEPPS and ABHD17A were highly correlated with the diagnosis of CAD and T2DM. The results indicate that CD8+ T cells (p = 0.04) and NKbright cells (p = 3.7e-3) are significantly higher in healthy controls than in individuals with CAD or CAD combined with T2DM. The bioinformatics results on immune infiltration were well validated by flow cytometry. Conclusions: A series of bioinformatics studies have shown ABHD17A and NPEPPS as key genes for the co-occurrence of CAD and T2DM. Our study highlights the important effect of CD8+ T and NK cells in the pathogenesis of both diseases, indicating that they may serve as viable targets for diagnosis and therapeutic intervention.
Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Humanos , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Regulação para Cima , Linfócitos T CD8-Positivos , Células Matadoras Naturais , Bases de Dados de Ácidos NucleicosRESUMO
The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) signaling pathway plays a critical protective role against viral infections. Metazoan STING undergoes multilayers of regulation to ensure specific signal transduction. However, the mechanisms underlying the regulation of bacterial STING remain unclear. In this study, we determined the crystal structure of anti-parallel dimeric form of bacterial STING, which keeps itself in an inactive state by preventing cyclic dinucleotides access. Conformational transition between inactive and active states of bacterial STINGs provides an on-off switch for downstream signaling. Some bacterial STINGs living in extreme environment contain an insertion sequence, which we show codes for an additional long lid that covers the ligand-binding pocket. This lid helps regulate anti-phage activities. Furthermore, bacterial STING can bind cyclic di-AMP in a triangle-shaped conformation via a more compact ligand-binding pocket, forming spiral-shaped protofibrils and higher-order fibril filaments. Based on the differences between cyclic-dinucleotide recognition, oligomerization, and downstream activation of different bacterial STINGs, we proposed a model to explain structure-function evolution of bacterial STINGs.
Assuntos
Bactérias , Transdução de Sinais , Animais , Ligantes , Bactérias/metabolismo , Genes Bacterianos , Nucleotidiltransferases/metabolismo , Imunidade InataRESUMO
AIM: The aim of the study was to analyse the correlation between maternally expressed gene 3 (MEG3) expression and heart rate variability (HRV) in heart failure patients with ventricular arrhythmia (VA). METHODS: A total of 130 heart failure patients, treated from July 2018 to March 2021, were prospectively selected and divided into a non-VA group (n = 85) and a VA group (n = 45) according to the presence or absence of VA. The correlations of serum MEG3 expression and HRV with cardiac function indicators were investigated by Pearson correlation analysis. Receiver operating characteristic (ROC) curves were plotted to assess the predictive value of MEG3, HRV and their combination for the occurrence of heart failure complicated with VA. RESULTS: The VA group had a higher left atrial diameter (LAD) and left ventricular end-diastolic diameter (LVEDD) but lower left ventricular ejection fraction (LVEF) and ratio of mitral early diastolic peak velocity (E) to late peak atrial filling velocity (A) (E/A) than the non-VA group (p < 0.05). The serum MEG3 expression was negatively correlated with: standard deviation of the average RR intervals calculated over five-minute segments in the 24-hour record (SDANN), SDANN index, standard deviation of normal-to-normal RR interval (SDNN) index, percentage of differences between adjacent normal RR intervals exceeding 50 ms (PNN50), root mean square of successive difference (RMSSD), low frequency (LF), high frequency (HF), very low frequency (VLF), LVEF and E/A (r < 0, p < 0.05). The serum MEG3 expression was positively correlated with LAD and LVEDD (r > 0, p < 0.05). The areas under the ROC curves of MEG3, SDANN, SDANN index, SDNN index, PNN50, RMSSD, LF, HF, VLF and their combination for the prediction of the occurrence of heart failure complicated with VA were 0.812, 0.731, 0.737, 0.689, 0.860, 0.783, 0.791, 0.856, 0.769 and 0.966, respectively. CONCLUSION: MEG3 combined with HRV can effectively predict the occurrence of heart failure complicated with VA.
RESUMO
BACKGROUND: Biliary adenomas that occur in the extrahepatic biliary tree are rare. It is difficult to distinguish it from cholangiocarcinoma or cholangiolithiasis by various imaging examinations, and it is very easy to be misdiagnosed. AIM: To evaluate the cumulative experiences including clinical characteristics and treatments of nine patients diagnosed with extrahepatic biliary adenoma admitted to the First Affiliated Hospital of Xi'an Jiaotong University from 2016 to 2022. METHODS: A total of nine patients were included in our study. The laboratory examinations, disease diagnosis, therapy and pathological characteristics, and follow-up of every patient were evaluated. RESULTS: Our cohort consisted of six females and three males with an average diagnosis age of 65.1 years (range 46-87). Six extrahepatic biliary adenomas were located in the common bile ducts and three in the hepatic duct. On initial presentation, all of the patients have symptom of biliary origin, including obstructive jaundice (4/9, 44.4%), abdominal pain (6/9, 66.7%), and fever (3/9, 33.3%). Preoperative imaging examination considered bile duct carcinoma in 6 cases and bile duct calculi in 3 cases. All the patients received surgical treatment and were confirmed by pathology as biliary adenoma. The symptoms improved significantly in all 9 patients after surgery. Seven of nine patients recovered well at follow-up without tumor recurrence. One patient died 2 mo after the surgery due to heart failure. One patient developed jaundice again 8 mo after surgery, underwent endoscopic retrograde cholangiopancreatography and biliary stent placement. CONCLUSION: Benign extrahepatic biliary tumors are rare and difficult to diagnosis preoperatively. Intraoperative choledochoscopy and timely biopsy may offer great advantages.
RESUMO
In viral evolution, a new mutation has to proliferate within the host (Stage I) in order to be transmitted and then compete in the host population (Stage II). We now analyze the intrahost single nucleotide variants (iSNVs) in a set of 79 SARS-CoV-2 infected patients with most transmissions tracked. Here, every mutation has two measures: 1) iSNV frequency within each individual host in Stage I; 2) occurrence among individuals ranging from 1 (private), 2-78 (public), to 79 (global) occurrences in Stage II. In Stage I, a small fraction of nonsynonymous iSNVs are sufficiently advantageous to rise to a high frequency, often 100%. However, such iSNVs usually fail to become public mutations. Thus, the selective forces in the two stages of evolution are uncorrelated and, possibly, antagonistic. For that reason, successful mutants, including many variants of concern, have to avoid being eliminated in Stage I when they first emerge. As a result, they may not have the transmission advantage to outcompete the dominant strains and, hence, are rare in the host population. Few of them could manage to slowly accumulate advantageous mutations to compete in Stage II. When they do, they would appear suddenly as in each of the six successive waves of SARS-CoV-2 strains. In conclusion, Stage I evolution, the gate-keeper, may contravene the long-term viral evolution and should be heeded in viral studies.
Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , MutaçãoRESUMO
Purine-containing nucleotide second messengers regulate diverse cellular activities. Cyclic di-pyrimidines mediate anti-phage functions in bacteria; however, the synthesis mechanism remains elusive. Here, we determine the high-resolution structures of cyclic di-pyrimidine-synthesizing cGAS/DncV-like nucleotidyltransferases (CD-NTases) in clade E (CdnE) in its apo, substrate-, and intermediate-bound states. A conserved (R/Q)xW motif controlling the pyrimidine specificity of donor nucleotide is identified. Mutation of Trp or Arg from the (R/Q)xW motif to Ala rewires its specificity to purine nucleotides, producing mixed purine-pyrimidine cyclic dinucleotides (CDNs). Preferential binding of uracil over cytosine bases explains the product specificity of cyclic di-pyrimidine-synthesizing CdnE to cyclic di-UMP (cUU). Based on the intermediate-bound structures, a synthetic pathway for cUU containing a unique 2'3'-phosphodiester linkage through intermediate pppU[3'-5']pU is deduced. Our results provide a framework for pyrimidine selection and establish the importance of conserved residues at the C-terminal loop for the specificity determination of CD-NTases.
Assuntos
Nucleotidiltransferases , Pirimidinas , Nucleotidiltransferases/genética , Nucleotídeos , Cromogranina A , Nucleotídeos de PurinaRESUMO
Flowering time is a key agronomic trait determining environmental adaptation and yield potential of crops. The regulatory mechanisms of flowering in maize still remain rudimentary. In this study, we combine expressional, genetic, and molecular studies to identify two homologous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors ZmSPL13 and ZmSPL29 as positive regulators of juvenile-to-adult vegetative transition and floral transition in maize. We show that both ZmSPL13 and ZmSPL29 are preferentially expressed in leaf phloem, vegetative and reproductive meristem. We show that vegetative phase change and flowering time are moderately delayed in the Zmspl13 and Zmspl29 single knockout mutants and more significantly delayed in the Zmspl13/29 double mutants. Consistently, the ZmSPL29 overexpression plants display precocious vegetative phase transition and floral transition, thus early flowering. We demonstrate that ZmSPL13 and ZmSPL29 directly upregulate the expression of ZmMIR172C and ZCN8 in the leaf, and of ZMM3 and ZMM4 in the shoot apical meristem, to induce juvenile-to-adult vegetative transition and floral transition. These findings establish a consecutive signaling cascade of the maize aging pathway by linking the miR156-SPL and the miR172-Gl15 regulatory modules and provide new targets for genetic improvement of flowering time in maize cultivars.
Assuntos
Flores , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Flores/fisiologia , Zea mays/genética , Zea mays/metabolismo , Folhas de Planta/metabolismo , Meristema/genética , Meristema/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Cancer is one of the major diseases that seriously endanger the health of all mankind. Accurate diagnosis of early cancer is the most promising way to reduce cancer harm and improve patient survival. However, many developed fluorescent probes for cancer imaging only have the function of identifying one marker, which cannot meet the needs of accurate diagnosis. Here, a fluorescent nanoprobe (CPH@ZIF-90) utilizing ZIF-90 to encapsulate SO2-sensitive dye (CPH) is synthesized for the sequential detection of ATP and SO2. The nanoprobe first interacts with ATP to release CPH, thus increasing the fluorescence at 685 nm and realizing the near-infrared (NIR) fluorescence detection of ATP. Then, SO2 acts on the released CPH through nucleophilic addition, affecting the π-conjugated structure of CPH and resulting in enhanced fluorescence at 580 nm. CPH@ZIF-90 exhibits satisfactory sensitivity and selectivity for sequential detection of ATP and SO2. Excitedly, CPH@ZIF-90 can sequentially image the endogenous ATP and SO2 in cells, showing sensitive fluorescence changes in dual channels (red and green). Due to the NIR emission properties of CPH@ZIF-90 and its ability to enrich in tumor, it is applied to monitor ATP and SO2 in mice and distinguish normal mice from tumor mice. The ability of CPH@ZIF-90 to sequentially detect two cancer-related biomarkers makes it provide meaningful assistance in accurate early diagnosis of cancer.
Assuntos
Neoplasias , Dióxido de Enxofre , Animais , Camundongos , Trifosfato de Adenosina , Corantes Fluorescentes/química , Diagnóstico por Imagem , Neoplasias/diagnóstico por imagemRESUMO
Maize (Zea mays L.) is a major staple crop worldwide, and during modern maize breeding, cultivars with increased tolerance to high-density planting and higher yield per plant have contributed significantly to the increased yield per unit land area. Systematically identifying key agronomic traits and their associated genomic changes during modern maize breeding remains a significant challenge because of the complexity of genetic regulation and the interactions of the various agronomic traits, with most of them being controlled by numerous small-effect quantitative trait loci (QTLs). Here, we performed phenotypic and gene expression analyses for a set of 137 elite inbred lines of maize from different breeding eras in China. We found four yield-related traits are significantly improved during modern maize breeding. Through gene-clustering analyses, we identified four groups of expressed genes with distinct trends of expression pattern change across the historical breeding eras. In combination with weighted gene co-expression network analysis, we identified several candidate genes regulating various plant architecture- and yield-related agronomic traits, such as ZmARF16, ZmARF34, ZmTCP40, ZmPIN7, ZmPYL10, ZmJMJ10, ZmARF1, ZmSWEET15b, ZmGLN6 and Zm00001d019150. Further, by combining expression quantitative trait loci (eQTLs) analyses, correlation coefficient analyses and population genetics, we identified a set of candidate genes that might have been under selection and contributed to the genetic improvement of various agronomic traits during modern maize breeding, including a number of known key regulators of plant architecture, flowering time and yield-related traits, such as ZmPIF3.3, ZAG1, ZFL2 and ZmBES1. Lastly, we validated the functional variations in GL15, ZmPHYB2 and ZmPYL10 that influence kernel row number, flowering time, plant height and ear height, respectively. Our results demonstrates the effectiveness of our combined approaches for uncovering key candidate regulatory genes and functional variation underlying the improvement of important agronomic traits during modern maize breeding, and provide a valuable genetic resource for the molecular breeding of maize cultivars with tolerance for high-density planting.
Assuntos
Melhoramento Vegetal , Locos de Características Quantitativas , Zea mays , Perfilação da Expressão Gênica , Locos de Características Quantitativas/genética , Variação Genética , Zea mays/genética , Zea mays/metabolismoRESUMO
Semantic segmentation of remote sensing imagery (RSI) is critical in many domains due to the diverse landscapes and different sizes of geo-objects that RSI contains, making semantic segmentation challenging. In this paper, a convolutional network, named Adaptive Feature Fusion UNet (AFF-UNet), is proposed to optimize the semantic segmentation performance. The model has three key aspects: (1) dense skip connections architecture and an adaptive feature fusion module that adaptively weighs different levels of feature maps to achieve adaptive feature fusion, (2) a channel attention convolution block that obtains the relationship between different channels using a tailored configuration, and (3) a spatial attention module that obtains the relationship between different positions. AFF-UNet was evaluated on two public RSI datasets and was quantitatively and qualitatively compared with other models. Results from the Potsdam dataset showed that the proposed model achieved an increase of 1.09% over DeepLabv3 + in terms of the average F1 score and a 0.99% improvement in overall accuracy. The visual qualitative results also demonstrated a reduction in confusion of object classes, better performance in segmenting different sizes of object classes, and better object integrity. Therefore, the proposed AFF-UNet model optimizes the accuracy of RSI semantic segmentation.
RESUMO
Trematodes of the genus Ogmocotyle are intestinal flukes that can infect a variety of definitive hosts, resulting in significant economic losses worldwide. However, there are few studies on molecular data of these trematodes. In this study, the mitochondrial (mt) genome of Ogmocotyle ailuri isolated from red panda (Ailurus fulgens) was determined and compared with those from Pronocephalata to investigate the mt genome content, genetic distance, gene rearrangements and phylogeny. The complete mt genome of O. ailuri is a typical closed circular molecule of 14 642 base pairs, comprising 12 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions. All genes are transcribed in the same direction. In addition, 23 intergenic spacers and 2 locations with gene overlaps were determined. Sequence identities and sliding window analysis indicated that cox1 is the most conserved gene among 12 PCGs in O. ailuri mt genome. The sequenced mt genomes of the 48 Plagiorchiida trematodes showed 5 types of gene arrangement based on all mt genome genes, with the gene arrangement of O. ailuri being type I. Phylogenetic analysis using concatenated amino acid sequences of 12 PCGs revealed that O. ailuri was closer to Ogmocotyle sikae than to Notocotylus intestinalis. These data enhance the Ogmocotyle mt genome database and provide molecular resources for further studies of Pronocephalata taxonomy, population genetics and systematics.