Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082180

RESUMO

Lipid nanoparticles (LNPs) can be designed to potentiate cancer immunotherapy by promoting their uptake by antigen-presenting cells, stimulating the maturation of these cells and modulating the activity of adjuvants. Here we report an LNP-screening method for the optimization of the type of helper lipid and of lipid-component ratios to enhance the delivery of tumour-antigen-encoding mRNA to dendritic cells and their immune-activation profile towards enhanced antitumour activity. The method involves screening for LNPs that enhance the maturation of bone-marrow-derived dendritic cells and antigen presentation in vitro, followed by assessing immune activation and tumour-growth suppression in a mouse model of melanoma after subcutaneous or intramuscular delivery of the LNPs. We found that the most potent antitumour activity, especially when combined with immune checkpoint inhibitors, resulted from a coordinated attack by T cells and NK cells, triggered by LNPs that elicited strong immune activity in both type-1 and type-2 T helper cells. Our findings highlight the importance of optimizing the LNP composition of mRNA-based cancer vaccines to tailor antigen-specific immune-activation profiles.

2.
Biomaterials ; 280: 121244, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794826

RESUMO

Functional recovery following peripheral nerve injury is limited by progressive atrophy of denervated muscle and Schwann cells (SCs) that occurs during the long regenerative period prior to end-organ reinnervation. Insulin-like growth factor 1 (IGF-1) is a potent mitogen with well-described trophic and anti-apoptotic effects on neurons, myocytes, and SCs. Achieving sustained, targeted delivery of small protein therapeutics remains a challenge. We hypothesized that a novel nanoparticle (NP) delivery system can provide controlled release of bioactive IGF-1 targeted to denervated muscle and nerve tissue to achieve improved motor recovery through amelioration of denervation-induced muscle atrophy and SC senescence and enhanced axonal regeneration. Biodegradable NPs with encapsulated IGF-1/dextran sulfate polyelectrolyte complexes were formulated using a flash nanoprecipitation method to preserve IGF-1 bioactivity and maximize encapsulation efficiencies. Under optimized conditions, uniform PEG-b-PCL NPs were generated with an encapsulation efficiency of 88.4%, loading level of 14.2%, and a near-zero-order release of bioactive IGF-1 for more than 20 days in vitro. The effects of locally delivered IGF-1 NPs on denervated muscle and SCs were assessed in a rat median nerve transection-without- repair model. The effects of IGF-1 NPs on axonal regeneration, muscle atrophy, reinnervation, and recovery of motor function were assessed in a model in which chronic denervation is induced prior to nerve repair. IGF-1 NP treatment resulted in significantly greater recovery of forepaw grip strength, decreased denervation-induced muscle atrophy, decreased SC senescence, and improved neuromuscular reinnervation.


Assuntos
Traumatismos dos Nervos Periféricos , Animais , Denervação , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/uso terapêutico , Músculo Esquelético/metabolismo , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Ratos , Recuperação de Função Fisiológica/fisiologia , Células de Schwann/metabolismo
3.
Front Immunol ; 12: 729086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512663

RESUMO

A successful malaria transmission blocking vaccine (TBV) requires the induction of a high antibody titer that leads to abrogation of parasite traversal of the mosquito midgut following ingestion of an infectious bloodmeal, thereby blocking the cascade of secondary human infections. Previously, we developed an optimized construct UF6b that elicits an antigen-specific antibody response to a neutralizing epitope of Anopheline alanyl aminopeptidase N (AnAPN1), an evolutionarily conserved pan-malaria mosquito midgut-based TBV target, as well as established a size-controlled lymph node targeting biodegradable nanoparticle delivery system that leads to efficient and durable antigen-specific antibody responses using the model antigen ovalbumin. Herein, we demonstrate that co-delivery of UF6b with the adjuvant CpG oligodeoxynucleotide immunostimulatory sequence (ODN ISS) 1018 using this biodegradable nanoparticle vaccine delivery system generates an AnAPN1-specific immune response that blocks parasite transmission in a standard membrane feeding assay. Importantly, this platform allows for antigen dose-sparing, wherein lower antigen payloads elicit higher-quality antibodies, therefore less antigen-specific IgG is needed for potent transmission-reducing activity. By targeting lymph nodes directly, the resulting immunopotentiation of AnAPN1 suggests that the de facto assumption that high antibody titers are needed for a TBV to be successful needs to be re-examined. This nanovaccine formulation is stable at -20°C storage for at least 3 months, an important consideration for vaccine transport and distribution in regions with poor healthcare infrastructure. Together, these data support further development of this nanovaccine platform for malaria TBVs.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anopheles/imunologia , Linfonodos/efeitos dos fármacos , Vacinas Antimaláricas/farmacologia , Malária/prevenção & controle , Nanopartículas , Oligodesoxirribonucleotídeos/farmacologia , Plasmodium/imunologia , Desenvolvimento de Vacinas , Animais , Anopheles/parasitologia , Anticorpos Neutralizantes/sangue , Anticorpos Antiprotozoários/sangue , Antígenos CD13/antagonistas & inibidores , Antígenos CD13/imunologia , Antígenos CD13/metabolismo , Composição de Medicamentos , Epitopos , Feminino , Interações Hospedeiro-Parasita , Imunoglobulina G/sangue , Linfonodos/imunologia , Linfonodos/parasitologia , Malária/imunologia , Malária/parasitologia , Malária/transmissão , Vacinas Antimaláricas/imunologia , Camundongos , Nanomedicina , Plasmodium/patogenicidade , Vacinação
4.
Vaccines (Basel) ; 8(2)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485944

RESUMO

Sustained immune responses, particularly antibody responses, are key for protection against many endemic infectious diseases. Antibody responses are often accompanied by T helper (Th) cell immunity. Herein we study small biodegradable poly (ethylene glycol)-b-poly (lactic-co-glycolic acid) nanoparticles (PEG-b-PLGA NPs, 25-50 nm) as antigen- or adjuvant-carriers. The antigen carrier function of PEG-b-PLGA NPs was compared against an experimental benchmark polystyrene nanoparticles (PS NPs, 40-50 nm), both conjugated with the model antigen ovalbumin (OVA-PS NPs, and OVA-PEG-b-PLGA NPs). The OVA-PEG-b-PLGA NPs induced sustained antibody responses to Day 120 after two immunizations. The OVA-PEG-b-PLGA NPs as a self-adjuvanting vaccine further induced IL-4 producing T-helper cells (Th2), but not IFN-γ producing T-cells (Th1). The PEG-b-PLGA NPs as a carrier for CpG adjuvant (CpG-PEG-b-PLGA NPs) were also tested as mix-in vaccine adjuvants comparatively for protein antigens, or for protein-conjugated to PS NPs or to PEG-b-PLGA NPs. While the addition of this adjuvant NP did not further increase T-cell responses, it improved the consistency of antibody responses across all immunization groups. Together these data support further development of PEG-b-PLGA NPs as a vaccine carrier, particularly where it is desired to induce Th2 immunity and achieve sustained antibody titers in the absence of affecting Th1 immunity.

5.
Adv Drug Deliv Rev ; 151-152: 72-93, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31626825

RESUMO

Nanoparticles (NPs) have been gaining prominence as delivery vehicles for modulating immune responses to improve treatments against cancer and autoimmune diseases, enhancing tissue regeneration capacity, and potentiating vaccination efficacy. Various engineering approaches have been extensively explored to control the NP physical and chemical properties including particle size, shape, surface charge, hydrophobicity, rigidity and surface targeting ligands to modulate immune responses. This review examines a specific set of physical and chemical characteristics of NPs that enable efficient delivery targeted to secondary lymphoid tissues, specifically the lymph nodes and immune cells. A critical analysis of the structure-property-function relationship will facilitate further efforts to engineer new NPs with unique functionalities, identify novel utilities, and improve the clinical translation of NP formulations for immunotherapy.


Assuntos
Células Dendríticas/efeitos dos fármacos , Linfonodos/efeitos dos fármacos , Nanopartículas/química , Animais , Células Dendríticas/imunologia , Sistemas de Liberação de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Linfonodos/imunologia , Tamanho da Partícula , Propriedades de Superfície
6.
Biomater Sci ; 7(12): 4873-4887, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31528923

RESUMO

To overcome the immunosuppressive milieu of malignancy and lack of well-defined antigens, potent adjuvants are needed for cancer immunotherapy. Numerous small molecular immunomodulators have the potential to fulfill this role. To enhance the immune response and decrease the toxicity, particulate systems including nanoparticles and macroparticles have been increasingly proposed as carriers for cancer antigen and adjuvant delivery. These systems have the potential to co-deliver the antigens and adjuvants simultaneously in the same particle. In addition, the particles can be engineered for localized and targeted delivery, whether it be to the cellular or sub-cellular level. These properties limit systemic side effects and improve delivery efficiency, and thus enhance the vaccine's immune response. In particular, the particles can be constructed to mimic the size and surface patterns of microbes, organisms to which we have evolved a strong immune response. The release characteristics of the particles can likewise be controlled to simulate the body's response to infections. Boosting the immune response of vaccines by virtue of their intrinsic immunostimulatory properties, these particles can be dosing-sparing and have the potential to reduce production cost of vaccines. As the interest in personalized cancer vaccines increases with their encouraging outcomes in clinical trials, particulate carrier systems have the potential to play an important role in optimizing cancer vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Anticâncer/imunologia , Animais , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/química , Humanos , Nanopartículas/química
7.
ACS Nano ; 13(9): 10161-10178, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31503450

RESUMO

Polyelectrolyte complex (PEC) nanoparticles assembled from plasmid DNA (pDNA) and polycations such as linear polyethylenimine (lPEI) represent a major nonviral delivery vehicle for gene therapy tested thus far. Efforts to control the size, shape, and surface properties of pDNA/polycation nanoparticles have been primarily focused on fine-tuning the molecular structures of the polycationic carriers and on assembly conditions such as medium polarity, pH, and temperature. However, reproducible production of these nanoparticles hinges on the ability to control the assembly kinetics, given the nonequilibrium nature of the assembly process and nanoparticle composition. Here we adopt a kinetically controlled mixing process, termed flash nanocomplexation (FNC), that accelerates the mixing of pDNA solution with polycation lPEI solution to match the PEC assembly kinetics through turbulent mixing in a microchamber. This achieves explicit control of the kinetic conditions for pDNA/lPEI nanoparticle assembly, as demonstrated by the tunability of nanoparticle size, composition, and pDNA payload. Through a combined experimental and simulation approach, we prepared pDNA/lPEI nanoparticles having an average of 1.3 to 21.8 copies of pDNA per nanoparticle and average size of 35 to 130 nm in a more uniform and scalable manner than bulk mixing methods. Using these nanoparticles with defined compositions and sizes, we showed the correlation of pDNA payload and nanoparticle formulation composition with the transfection efficiencies and toxicity in vivo. These nanoparticles exhibited long-term stability at -20 °C for at least 9 months in a lyophilized formulation, validating scalable manufacture of an off-the-shelf nanoparticle product with well-defined characteristics as a gene medicine.


Assuntos
DNA/metabolismo , Nanopartículas/química , Plasmídeos/metabolismo , Polieletrólitos/química , Animais , Linhagem Celular Tumoral , Difusão Dinâmica da Luz , Liofilização , Humanos , Cinética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polietilenoimina/química , Fatores de Tempo , Transfecção , Transgenes
8.
Nano Res ; 12(4): 837-844, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33343832

RESUMO

Lymph node (LN) targeting through interstitial drainage of nanoparticles (NPs) is an attractive strategy to stimulate a potent immune response, as LNs are the primary site for lymphocyte priming by antigen presenting cells (APCs) and triggering of an adaptive immune response. NP size has been shown to influence the efficiency of LN-targeting and retention after subcutaneous injection. For clinical translation, biodegradable NPs are preferred as carrier for vaccine delivery. However, the selective "size gate" for effective LN-drainage, particularly the kinetics of LN trafficking, is less well defined. This is partly due to the challenge in generating size-controlled NPs from biodegradable polymers in the sub-100-nm range. Here, we report the preparation of three sets of poly(lactic-co-glycolic)-b-poly(ethylene-glycol) (PLGA-b-PEG) NPs with number average diameters of 20-, 40-, and 100-nm and narrow size distributions using flash nanoprecipitation. Using NPs labeled with a near-infrared dye, we showed that 20-nm NPs drain rapidly across proximal and distal LNs following subcutaneous inoculation in mice and are retained in LNs more effectively than NPs with a number average diameter of 40-nm. The drainage of 100-nm NPs was negligible. Furthermore, the 20-nm NPs showed the highest degree of penetration around the paracortex region and had enhanced access to dendritic cells in the LNs. Together, these data confirmed that small, size-controlled PLGA-b-PEG NPs at the lower threshold of about 30-nm are most effective for LN trafficking, retention, and APC uptake after s.c. administration. This report could inform the design of LN-targeted NP carrier for the delivery of therapeutic or prophylactic vaccines.

9.
Nano Lett ; 17(11): 7045-7054, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28994285

RESUMO

Particles engineered to engage and interact with cell surface ligands and to modulate cells can be harnessed to explore basic biological questions as well as to devise cellular therapies. Biology has inspired the design of these particles, such as artificial antigen-presenting cells (aAPCs) for use in immunotherapy. While much has been learned about mimicking antigen presenting cell biology, as we decrease the size of aAPCs to the nanometer scale, we need to extend biomimetic design to include considerations of T cell biology-including T-cell receptor (TCR) organization. Here we describe the first quantitative analysis of particle size effect on aAPCs with both Signals 1 and 2 based on T cell biology. We show that aAPCs, larger than 300 nm, activate T cells more efficiently than smaller aAPCs, 50 nm. The 50 nm aAPCs require saturating doses or require artificial magnetic clustering to activate T cells. Increasing ligand density alone on the 50 nm aAPCs did not increase their ability to stimulate CD8+ T cells, confirming the size-dependent phenomenon. These data support the need for multireceptor ligation and activation of T-cell receptor (TCR) nanoclusters of similar sizes to 300 nm aAPCs. Quantitative analysis and modeling of a nanoparticle system provides insight into engineering constraints of aAPCs for T cell immunotherapy applications and offers a case study for other cell-modulating particles.


Assuntos
Células Apresentadoras de Antígenos/química , Células Artificiais/química , Imunomodulação , Ativação Linfocitária , Nanopartículas/química , Células Artificiais/imunologia , Células Artificiais/ultraestrutura , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Biomimética/métodos , Antígenos CD28/imunologia , Antígenos CD8/imunologia , Humanos , Imunoterapia , Ligantes , Complexo Principal de Histocompatibilidade , Nanopartículas/uso terapêutico , Nanopartículas/ultraestrutura , Neoplasias/terapia , Tamanho da Partícula , Receptores de Antígenos de Linfócitos T/imunologia
10.
ACS Nano ; 8(5): 4559-70, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24779637

RESUMO

Development of nontoxic, tumor-targetable, and potent in vivo RNA delivery systems remains an arduous challenge for clinical application of RNAi therapeutics. Herein, we report a versatile RNAi nanoplatform based on tumor-targeted and pH-responsive nanoformulas (NFs). The NF was engineered by combination of an artificial RNA receptor, Zn(II)-DPA, with a tumor-targetable and drug-loadable hyaluronic acid nanoparticle, which was further modified with a calcium phosphate (CaP) coating by in situ mineralization. The NF can encapsulate small-molecule drugs within its hydrophobic inner core and strongly secure various RNA molecules (siRNAs, miRNAs, and oligonucleotides) by utilizing Zn(II)-DPA and a robust CaP coating. We substantiated the versatility of the RNAi nanoplatform by demonstrating effective delivery of siRNA and miRNA for gene silencing or miRNA replacement into different human types of cancer cells in vitro and into tumor-bearing mice in vivo by intravenous administration. The therapeutic potential of NFs coloaded with an anticancer drug doxorubicin (Dox) and multidrug resistance 1 gene target siRNA (siMDR) was also demonstrated in this study. NFs loaded with Dox and siMDR could successfully sensitize drug-resistant OVCAR8/ADR cells to Dox and suppress OVCAR8/ADR tumor cell proliferation in vitro and tumor growth in vivo. This gene/drug delivery system appears to be a highly effective nonviral method to deliver chemo- and RNAi therapeutics into host cells.


Assuntos
Portadores de Fármacos , Técnicas de Transferência de Genes , Nanopartículas/química , Interferência de RNA , RNA/química , Animais , Cálcio/química , Linhagem Celular Tumoral , Proliferação de Células , Doxorrubicina/química , Endocitose , Feminino , Inativação Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Hialuronoglucosaminidase/química , Concentração de Íons de Hidrogênio , Íons , Camundongos , Camundongos Nus , MicroRNAs/química , Nanoestruturas/química , Fosfatos/química , RNA Interferente Pequeno/metabolismo
11.
Biomacromolecules ; 14(3): 910-9, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23360320

RESUMO

There is compelling evidence that, beyond their traditional role in hemostasis and thrombosis, platelets play a significant role in mediating hematologic mechanisms of tumor metastasis by directly and indirectly interacting with pro-metastatic cancer cells. With this rationale, we hypothesized that platelets can be an effective paradigm to develop nanomedicine platforms that utilize platelet-mimetic interaction mechanisms for targeted diagnosis and therapy of metastatic cancer cells. Here we report on our investigation of the development of nanoconstructs that interact with metastatic cancer cells via platelet-mimetic heteromultivalent ligand-receptor pathways. For our studies, pro-metastatic human breast cancer cell line MDA-MB-231 was studied for its surface expression of platelet-interactive receptors, in comparison to another low-metastatic human breast cancer cell line, MCF-7. Certain platelet-interactive receptors were found to be significantly overexpressed on the MDA-MB-231 cells, and these cells showed significantly enhanced binding interactions with active platelets compared to MCF-7 cells. Based upon these observations, two specific receptor interactions were selected, and corresponding ligands were engineered onto the surface of liposomes as model nanoconstructs, to enable platelet-mimetic binding to the cancer cells. Our model platelet-mimetic liposomal constructs showed enhanced targeting and attachment of MDA-MB-231 cells compared to the MCF-7 cells. These results demonstrate the promise of utilizing platelet-mimetic constructs in modifying nanovehicle constructs for metastasis-targeted drug as well as modifying surfaces for ex-vivo cell enrichment diagnostic technologies.


Assuntos
Materiais Biomiméticos/farmacologia , Plaquetas/metabolismo , Neoplasias da Mama/metabolismo , Nanomedicina/métodos , Antineoplásicos/farmacologia , Daunorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Lipossomos , Células MCF-7 , Rodaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA