Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(22): 15220-15231, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38737968

RESUMO

The microstructure and physical properties of reflective and black aluminum were compared for layers of different thicknesses deposited by magnetron sputtering on fused silica substrates. Reflective Al layers followed the Volmer-Weber growth mechanism classically observed for polycrystalline metal films. On the contrary, the extra nitrogen gas used to deposit the black aluminum layers modified the growth mechanism and changed the film morphologies. Nitrogen cumulated in the grain boundaries, favoring the pinning effect and stopping crystallite growth. High defect concentration, especially vacancies, led to strong columnar growth. Properties reported for black aluminum tend to be promising for sensors and emissivity applications.

2.
Nanomaterials (Basel) ; 12(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500920

RESUMO

The resolution of a quartz crystal microbalance (QCM) is particularly crucial for gas sensor applications where low concentrations are detected. This resolution can be improved by increasing the effective surface of QCM electrodes and, thereby, enhancing their sensitivity. For this purpose, various researchers have investigated the use of micro-structured materials with promising results. Herein, we propose the use of easy-to-manufacture metal blacks that are highly structured even on a nanoscale level and thus provide more bonding sites for gas analytes. Two different black metals with thicknesses of 280 nm, black aluminum (B-Al) and black gold (B-Au), were deposited onto the sensor surface to improve the sensitivity following the Sauerbrey equation. Both layers present a high surface roughness due to their cauliflower morphology structure. A high response (i.e., resonant frequency shift) of these QCM sensors coated with a black metal layer was obtained. Two gaseous analytes, H2O vapor and EtOH vapor, at different concentrations, are tested, and a distinct improvement of sensitivity is observed for the QCM sensors coated with a black metal layer compared to the blank ones, without strong side effects on resonance frequency stability or mechanical quality factor. An approximately 10 times higher sensitivity to EtOH gas is reported for the QCM coated with a black gold layer compared to the blank QCM sensor.

3.
Nanoscale Adv ; 3(23): 6596-6607, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36132661

RESUMO

The present work provides an innovative approach to the near-surface slow-positron-beam (SPB) study of structural materials exposed to ion-beam irradiation. This approach enables the use of variable-energy positron annihilation lifetime spectroscopy (PALS) to characterise a wide range of microstructural damage along the ion implantation profile. In a typical application of the SPB PALS technique, positron lifetime is used to provide qualitative information on the size of vacancy clusters as a function of the positron energy, i.e., the probing depth of the spectrometer. This approach is limited to a certain defect concentration above which the positron lifetime gets saturated. In our experiments, we investigated the back-diffusion of positrons and their annihilation at the surface. The probability of such an event is characterised by the positron diffusion length, and it depends on the density of lattice defects, even in the saturation range of the positron lifetime. Until now, the back-diffusion experiments were reported only in connection with Doppler broadening spectroscopy (DBS) of positron-annihilation radiation. To verify the validity of the used approach, we compared the obtained results on helium-implanted Fe9Cr alloy and its oxide dispersion strengthened variant with the transmission electron microscopy and "conventional" slow positron DBS analysis.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(6 Pt 2): 066201, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19658577

RESUMO

This is a continuation of our paper [Phys. Rev. E 79, 046202 (2009)] devoted to signatures of quantum chaos in the geometric collective model of atomic nuclei. We apply the method by Peres to study ordered and disordered patterns in quantum spectra drawn as lattices in the plane of energy vs average of a chosen observable. Good qualitative agreement with standard measures of chaos is manifested. The method provides an efficient tool for studying structural changes in eigenstates across quantum spectra of general systems.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 2): 046202, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19518307

RESUMO

Spectra of the geometric collective model of atomic nuclei are analyzed to identify chaotic correlations among nonrotational states. The model has been previously shown to exhibit a high degree of variability of regular and chaotic classical features with energy and control parameters. Corresponding signatures are now verified also on the quantum level for different schemes of quantization and with a variable classicality constant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...