Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Cell Oncol (Dordr) ; 46(5): 1301-1316, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37079187

RESUMO

Acute myeloid leukemia (AML) is a fast-growing and highly fatal blood cancer, and recent research has shown that targeting metabolism may be a promising therapeutic approach for treating AML. One promising target is the human mitochondrial NAD(P)+-dependent malic enzyme (ME2), which is involved in the production of pyruvate and NAD(P)H and the regulation of the NAD+/NADH redox balance. Inhibition of ME2 via silencing ME2 or utilizing its allosteric inhibitor disodium embonate (Na2EA) causes a decrease in pyruvate and NADH, leading to a decrease in producing ATP via cellular respiration and oxidative phosphorylation. ME2 inhibition also decreases NADPH levels, resulting in an increase in reactive oxygen species (ROS) and oxidative stress, which ultimately leads to cellular apoptosis. Additionally, ME2 inhibition reduces pyruvate metabolism and the biosynthetic pathway. ME2 silencing inhibits the growth of xenotransplanted human AML cells, and the allosteric ME2 inhibitor Na2EA demonstrates antileukemic activity against immune-deficient mice with disseminated AML. Both of these effects are a result of impaired energy metabolism in mitochondria. These findings suggest that the targeting ME2 may be an effective strategy for treating AML. Overall, ME2 plays an essential role in energy metabolism of AML cells, and its inhibition may offer a promising approach for AML treatment.


Assuntos
Leucemia Mieloide Aguda , NAD , Humanos , Camundongos , Animais , NAD/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Oxirredução , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Piruvatos
2.
Cell Mol Biol Lett ; 27(1): 19, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236296

RESUMO

Peptididylarginine deiminase type 2 (PADI2) catalyzes the conversion of arginine residues to citrulline residues on proteins. We demonstrate that PADI2 induces T cell activation and investigate how PADI2 promotes activated T cell autonomous death (ACAD). In activated Jurkat T cells, overexpression of PADI2 significantly increases citrullinated proteins and induces endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling, ultimately resulting in the expression of autophagy-related proteins and autophagy. PADI2 promoted autophagy and resulted in the early degradation of p62 and the light chain 3B (LC3B)-II accumulation. In Jurkat T cells, silencing the autophagy-related gene (Atg) 12 protein inhibits PADI2-mediated autophagy and promotes ER stress and apoptosis, whereas overexpression of Atg12 decreased ER stress and prolonged autophagy to promote cell survival. Additionally, PADI2 regulates T cell activation and the production of Th17 cytokines in Jurkat T cells (interleukins 6, IL-17A, IL-17F, IL-21, and IL-22). In Jurkat T cells, silencing IL-6 promotes autophagy mediated by PADI2 and inhibits PADI2-induced apoptosis, whereas silencing Beclin-1 increases the activation and survival of Th17-like T cells while decreasing autophagy and apoptosis. PADI2 silencing alleviates ER stress caused by PADI2 and decreases cytokine expression associated with Th17-like T cell activation and ACAD. We propose that PADI2 was involved in Th17 lymphocyte ACAD via a mechanism involving ER stress and autophagy that was tightly regulated by PADI2-mediated citrullination. These findings suggest that inhibiting Th17 T cell activation and the development of severe autoimmune diseases may be possible through the use of novel antagonists that specifically target PADI2.


Assuntos
Estresse do Retículo Endoplasmático , Proteína-Arginina Desiminase do Tipo 2 , Células Th17 , Apoptose , Autofagia , Proteína Beclina-1 , Estresse do Retículo Endoplasmático/imunologia , Proteína-Arginina Desiminase do Tipo 2/imunologia , Células Th17/imunologia
3.
J Cell Physiol ; 237(4): 2140-2154, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35019151

RESUMO

We present a mechanism for how ornithine decarboxylase (ODC) regulates the crosstalk between autophagy and apoptosis. In cancer cells, low-intensity ultraviolet B (UVBL ) induces autophagy while high-intensity UVB (UVBH ) induces apoptosis. Overexpression of ODC decreases UVBL -induced autophagy by inhibiting Atg5-Atg12 conjugation and suppressing the expression of autophagy markers LC3, Atg7, Atg12, and BECN1 proteins. In contrast, when ODC-overexpressing cells are exposed to UVBH radiation, the levels of LC3-II, Atg5-Atg12 conjugate, BECN1, Atg7, and Atg12 increase, while the apoptosis marker cleaved-PARP proteins decrease, indicating that ODC overexpression induced UVBH -induced autophagy but inhibited UVBH -induced cellular apoptosis. Additionally, when exposed to UVBH radiation, silencing BECN1, Atg5, and Atg12 genes results in a decrease in the level of LC3-II proteins but an increase in the level of cleaved-PARP proteins, and apoptotic bodies were significantly increased while autophagosomes were significantly decreased. These findings imply that ODC inhibits apoptosis in cells via the autophagy pathway. The role of Atg12 in ODC-overexpressing cells exposed to UVBH radiation is investigated using site-directed mutagenesis. Our results indicate that the Atg12-D111S mutant has increased cell survival. The Atg12-ΔG186 mutant impairs autophagy and enhances apoptosis. We demonstrate that when ODC-overexpressing cells are silenced for the Atg12 protein, autophagy and apoptosis are strongly affected, and ODC-induced autophagy protects against UVBH -induced apoptosis via the Atg12 protein.


Assuntos
Ornitina Descarboxilase , Lesões por Radiação , Apoptose/genética , Autofagia/genética , Proteína 12 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Humanos , Ornitina Descarboxilase/genética , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...