Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124041

RESUMO

In this paper, artificial intelligence (AI) technology is applied to the electromagnetic imaging of anisotropic objects. Advances in magnetic anomaly sensing systems and electromagnetic imaging use electromagnetic principles to detect and characterize subsurface or hidden objects. We use measured multifrequency scattered fields to calculate the initial dielectric constant distribution of anisotropic objects through the backpropagation scheme (BPS). Later, the estimated multifrequency permittivity distribution is input to a convolutional neural network (CNN) for the adaptive moment estimation (ADAM) method to reconstruct a more accurate image. In the meantime, we also improve the definition of loss function in the CNN. Numerical results show that the improved loss function unifying the structural similarity index measure (SSIM) and root mean square error (RMSE) can effectively enhance image quality. In our simulation environment, noise interference is considered for both TE (transverse electric) and TM (transverse magnetic) waves to reconstruct anisotropic scatterers. Lastly, we conclude that multifrequency reconstructions are more stable and precise than single-frequency reconstructions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...