Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37571759

RESUMO

Nowadays, with the rapid growth of the internet of things (IoT), massive amounts of time series data are being generated. Time series data play an important role in scientific and technological research for conducting experiments and studies to obtain solid and convincing results. However, due to privacy restrictions, limited access to time series data is always an obstacle. Moreover, the limited available open source data are often not suitable because of a small quantity and insufficient dimensionality and complexity. Therefore, time series data generation has become an imperative and promising solution. In this paper, we provide an overview of classical and state-of-the-art time series data generation methods in IoT. We classify the time series data generation methods into four major categories: rule-based methods, simulation-model-based methods, traditional machine-learning-based methods, and deep-learning-based methods. For each category, we first illustrate its characteristics and then describe the principles and mechanisms of the methods. Finally, we summarize the challenges and future directions of time series data generation in IoT. The systematic classification and evaluation will be a valuable reference for researchers in the time series data generation field.

2.
Nat Commun ; 13(1): 7710, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513669

RESUMO

Atmospheric ammonia (NH3) and ammonium (NH4+) can substantially influence air quality, ecosystems, and climate. NH3 volatilization from fertilizers and wastes (v-NH3) has long been assumed to be the primary NH3 source, but the contribution of combustion-related NH3 (c-NH3, mainly fossil fuels and biomass burning) remains unconstrained. Here, we collated nitrogen isotopes of atmospheric NH3 and NH4+ and established a robust method to differentiate v-NH3 and c-NH3. We found that the relative contribution of the c-NH3 in the total NH3 emissions reached up to 40 ± 21% (6.6 ± 3.4 Tg N yr-1), 49 ± 16% (2.8 ± 0.9 Tg N yr-1), and 44 ± 19% (2.8 ± 1.3 Tg N yr-1) in East Asia, North America, and Europe, respectively, though its fractions and amounts in these regions generally decreased over the past decades. Given its importance, c-NH3 emission should be considered in making emission inventories, dispersion modeling, mitigation strategies, budgeting deposition fluxes, and evaluating the ecological effects of atmospheric NH3 loading.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Amônia/análise , Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental/métodos , Nitrogênio/análise , China
3.
Environ Pollut ; 311: 119969, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35981639

RESUMO

The elevation of nitrogen (N) deposition by urbanization profoundly impacts the structure and function of surrounding forest ecosystems. Plants are major biomass sinks of external N inputs into forests. Yet, the N-use strategies of forest plants in many areas remain unconstrained in city areas, so their responses and adapting mechanisms to the elevated N deposition are open questions. Here we investigated concentrations and N isotope (δ15N) of total N (TN) and nitrate (NO3-) in leaves and roots of four plant species in subtropical shrubberies and pine forests under N deposition levels of 13 kg-N ha-1 yr-1 and 29 kg-N ha-1 yr-1 at the Guiyang area of southwestern China, respectively. The δ15N differences between plant NO3- and soil NO3- revealed a meager NO3- reduction in leaves but a preferentially high NO3- reduction in roots. δ15N mass-balance analyses between plant TN and soil dissolved N suggested that soil NO3- contributed more than reduced N, and dissolved organic N contributed comparably with ammonium to plant TN, and the study plants preferred NO3- over reduced N. The elevation of N deposition induced root but not leaf NO3- reduction and enhanced the contribution of soil NO3- to plant TN, but plant NO3- preference decreased due to much higher magnitudes of soil NO3- enrichment than plant NO3- utilization. We conclude that plants in subtropical forests of southwestern China preferred NO3- over reduced N, and NO3- was reduced more in roots than in leaves, anthropogenic N pollution enhanced soil NO3- enrichment and plant NO3- utilization but reduced plant NO3- preference.


Assuntos
Ecossistema , Nitrogênio , China , Florestas , Nitrogênio/análise , Plantas , Solo/química
4.
Sci Total Environ ; 838(Pt 3): 156405, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660601

RESUMO

To examine the perturbation of atmospheric nitrogen (N) deposition on soil N status and the biogeochemical cycle is meaningful for understanding forest function evolution with environmental changes. However, levels of soil bioavailable N and their environmental controls in forests receiving high atmospheric N deposition remain less investigated, which hinders evaluating the effects of enhanced anthropogenic N loading on forest N availability and N losses. This study analyzed concentrations of soil extractable N, microbial biomass N, net rates of N mineralization and nitrification, and their relationships with environmental factors among 26 temperate forests under the N deposition rates between 28.7 and 69.0 kg N ha-1 yr-1 in the Beijing-Tianjin-Hebei (BTH) region of northern China. Compared with other forests globally, forests in the BTH region showed higher levels of soil bioavailable N (NH4+, 27.1 ± 0.8 mg N kg-1; NO3-, 7.0 ± 0.8 mg N kg-1) but lower net rates of N mineralization and nitrification (0.5 ± 0.1 mg N kg-1 d-1 and 0.4 ± 0.1 mg N kg-1 d-1, respectively). Increasing N deposition levels increased soil nitrification and NO3- concentrations but did not increase microbial biomass N and N mineralization among the study forests. Soil moisture and C availability were found as dominant factors influencing microbial N mineralization and bioavailable N. In addition, by budgeting the differences in soil total N densities between the 2000s and 2010s, atmospheric N inputs to the forests were more retained in soils than lost proportionally (84% vs. 16%). We concluded that the high N deposition enriched soil N without stimulating microbial N mineralization among the study forests. These results clarified soil N status and the major controlling factors under high anthropogenic N loading, which is helpful for evaluating the fates and ecological effects of atmospheric N pollution.


Assuntos
Nitrogênio , Solo , China , Florestas , Nitrificação , Nitrogênio/análise , Microbiologia do Solo
5.
World Wide Web ; 25(3): 1489-1515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35002477

RESUMO

The healthcare industry faces serious problems with health data. Firstly, health data is fragmented and its quality needs to be improved. Data fragmentation means that it is difficult to integrate the patient data stored by multiple health service providers. The quality of these heterogeneous data also needs to be improved for better utilization. Secondly, data sharing among patients, healthcare service providers and medical researchers is inadequate. Thirdly, while sharing health data, patients' right to privacy must be protected, and patients should have authority over who can access their data. In traditional health data sharing system, because of centralized management, data can easily be stolen, manipulated. These systems also ignore patient's authority and privacy. Researchers have proposed some blockchain-based health data sharing solutions where blockchain is used for consensus management. Blockchain enables multiple parties who do not fully trust each other to exchange their data. However, the practice of smart contracts supporting these solutions has not been studied in detail. We propose CrowdMed-II, a health data management framework based on blockchain, which could address the above-mentioned problems of health data. We study the design of major smart contracts in our framework and propose two smart contract structures. We also introduce a novel search contract for searching patients in the framework. We evaluate their efficiency based on the execution costs on Ethereum. Our design improves on those previously proposed, lowering the computational costs of the framework. This allows the framework to operate at scale and is more feasible for widespread adoption.

6.
Sci Total Environ ; 806(Pt 3): 151203, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710420

RESUMO

Exotic plant invasion is an urgent issue occurring in the biosphere, which can be stimulated by environmental nitrogen (N) loading. However, the allocation and assimilation of soil N sources between leaves and roots remain unclear for plants in invaded ecosystems, which hampers the understanding of mechanisms behind the expansion of invasive plants and the co-existence of native plants. This work established a new framework to use N concentrations and isotopes of soils, roots, and leaves to quantitatively decipher intra-plant N allocation and assimilation among plant species under no invasion and under the invasion of Chromolaena odorata and Ageratina adenophora in a tropical ecosystem of SW China. We found that the assimilation of N derived from both soil ammonium (NH4+) and nitrate (NO3-) were higher in leaves than in roots for invasive plants, leading to higher leaf N levels than native plants. Compared with the same species under no invasion, most native plants under invasion showed higher N concentrations and NH4+ assimilations in both leaves and roots, and increases in leaf N were higher than in root N for native plants under invasion. These results inform that preferential N allocation, dominated by NH4+-derived N, to leaves over roots as an important N-use strategy for plant invasion and co-existence in the studied tropical ecosystem.


Assuntos
Ecossistema , Nitrogênio , Isótopos , Nitrogênio/análise , Folhas de Planta/química , Raízes de Plantas/química , Solo
7.
Nat Commun ; 12(1): 243, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431857

RESUMO

Since the industrial revolution, it has been assumed that fossil-fuel combustions dominate increasing nitrogen oxide (NOx) emissions. However, it remains uncertain to the actual contribution of the non-fossil fuel NOx to total NOx emissions. Natural N isotopes of NO3- in precipitation (δ15Nw-NO3-) have been widely employed for tracing atmospheric NOx sources. Here, we compiled global δ15Nw-NO3- observations to evaluate the relative importance of fossil and non-fossil fuel NOx emissions. We found that regional differences in human activities directly influenced spatial-temporal patterns of δ15Nw-NO3- variations. Further, isotope mass-balance and bottom-up calculations suggest that the non-fossil fuel NOx accounts for 55 ± 7% of total NOx emissions, reaching up to 21.6 ± 16.6Mt yr-1 in East Asia, 7.4 ± 5.5Mt yr-1 in Europe, and 21.8 ± 18.5Mt yr-1 in North America, respectively. These results reveal the importance of non-fossil fuel NOx emissions and provide direct evidence for making strategies on mitigating atmospheric NOx pollution.

8.
Sci Total Environ ; 713: 136620, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019017

RESUMO

Human activities have distinctly enhanced the deposition levels of atmospheric nitrogen (N) pollutants into terrestrial ecosystems, but whether and to what extents soil carbon (C) and N status have been influenced by elevated N inputs remain poorly understood in the 'real' world given related knowledge has largely based on N-addition experiments. Here we reported soil organic C (OC) and total N (TN) for twenty-seven forests along a gradient of N deposition (22.4-112.9 kg N/ha/yr) in the Beijing-Tianjin-Hebei (BTH) region of northern China, a global hotspot of high N pollution. Levels of soil TN in forests of the BTH region have been elevated compared with investigations in past decades, suggesting that long-term N deposition might cause soil TN increases. Combining with major geographical and environmental factors among the study forests, we found unexpectedly that soil moisture and pH values rather than N deposition levels were major regulators of the observed spatial variations of soil OC and TN contents. As soil moisture and pH values increased with mean annual precipitation and temperature, respectively, soil C and N status in forests of the BTH region might be more responsive to climate change than to N pollution. These evidence suggests that both N deposition and climate differences should be considered into managing ecosystem functions of forest resources in regions with high N pollution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...