Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Sci Total Environ ; 954: 176282, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39278502

RESUMO

Black shale is a type of sedimentary rocks that are enriched in rare earth elements (REEs). It is of both economic importance and environmental significance to understand REE mobility during black shale weathering. The present study approaches to this by analysing REEs in acid rock drainage (ARD) from black shale weathering system, fresh and weathered black shales, soils derived from black shales, and sequential extractants from black shales at Dongping town in Hunan province (China). Results showed that REEs had variable high concentrations in ARD as shown by total REE + Y (∑REY) concentrations from 162 to 4074 (µg/L). REEs in ARD displayed hat-shape NASC-normalized patterns with significant enrichments of middle REEs (MREE) relative to light REEs (LREE) and heavy REEs (HREE), and had significant negative Ce (Ce/Ce⁎ = 0.6) and positive Y (Y/Y⁎ = 1.5) anomalies. MREE enrichment in ARD could be evaluated using MREE/MREE⁎ values, which varied from 1.43 to 1.81 with a mean of 1.65, distinctly higher than those of whole rocks (around 1.0). 1 M HCl extraction results suggested that REEs were integratedly mobilized during shale weathering, while six-step extraction studies identified that REEs in ARD resulted from exchangeable and Fe-oxide fractions with MREE and HREE enrichment in shales respectively. MREE in exchangeable and HREE in Fe-oxide fractions were preferentially released during weathering, as illustrated by plots of MREE/MREE⁎ against HREE/LREE ratios of ARD and six-step extractants. Therefore, geochemical processes for REE mobility during black shale weathering included integrated mobilization and preferential release. Integrated REE mobilization resulted from the dissolution of REE-bearing minerals and oxidation of sulfides. Preferential REE release resulted from acid fluids produced by sulfide oxidation during weathering. Thus, a new model was proposed for interpreting geochemical processes of REE mobility during black shale weathering, and for understanding REE distribution in ARD from natural and anthropogenic systems.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39248087

RESUMO

OBJECTIVE: The objective of this study is to segment creeping fat and intestinal wall on computed tomography enterography (CTE) and develop a radiomic model to predict 1-year surgery risk in patients with Crohn's disease. METHODS: This retrospective study included 135 Crohn's disease patients who underwent CTE between January and December 2021 (training cohort) and 69 patients between January and June 2022 (test cohort). A total of 1874 radiomic features were extracted from the intestinal wall and creeping fat respectively on the venous phase CTE images, and radiomic models were constructed based on the selected features using the Boruta and extreme gradient boosting algorithms. The combined models were established by integrating clinical predictors and radiomic models. The receiver operating characteristic curve, calibration curve, and decision curve analyses were used to compare the predictive performance of models. RESULTS: In the training and test cohorts, the area under the curve (AUC) values of the creeping fat radiomic model for surgery risk stratification were 0.916 and 0.822, respectively, similar to the intestinal model with AUC values of 0.889 and 0.822. Moreover, the combined radiomic model was superior to the single models, showing good discrimination with the highest AUC values (training cohort: 0.963; test cohort: 0.882). Addition of clinical predictors to the radiomic models failed to significantly improve the diagnostic ability. CONCLUSION: The CTE-based creeping fat radiomic model provided additional information to the intestinal radiomic model, and their combined radiomic model enables accurate surgery risk prediction of Crohn's disease patients within 1 year of CTE.

3.
Eur Radiol ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39299951

RESUMO

OBJECTIVE: To evaluate multisite effects on fetal brain MRI. Specifically, to identify crucial acquisition factors affecting fetal brain structural measurements and developmental patterns, while assessing the effectiveness of existing harmonization methods in mitigating site effects. MATERIALS AND METHODS: Between May 2017 and March 2022, T2-weighted fast spin-echo sequences in-utero MRI were performed on healthy fetuses from retrospectively recruited pregnant volunteers on four different scanners at four sites. A generalized additive model (GAM) was used to quantitatively assess site effects, including field strength (FS), manufacturer (M), in-plane resolution (R), and slice thickness (ST), on subcortical volume and cortical morphological measurements, including cortical thickness, curvature, and sulcal depth. Growth models were selected to elucidate the developmental trajectories of these morphological measurements. Welch's test was performed to evaluate the influence of site effects on developmental trajectories. The comBat-GAM harmonization method was applied to mitigate site-related biases. RESULTS: The final analytic sample consisted of 340 MRI scans from 218 fetuses (mean GA, 30.1 weeks ± 4.4 [range, 21.7-40 weeks]). GAM results showed that lower FS and lower spatial resolution led to overestimations in selected brain regions of subcortical volumes and cortical morphological measurements. Only the peak cortical thickness in developmental trajectories was significantly influenced by the effects of FS and R. Notably, ComBat-GAM harmonization effectively removed site effects while preserving developmental patterns. CONCLUSION: Our findings pinpointed the key acquisition factors in in-utero fetal brain MRI and underscored the necessity of data harmonization when pooling multisite data for fetal brain morphology investigations. KEY POINTS: Question How do specific site MRI acquisition factors affect fetal brain imaging? Finding Lower FS and spatial resolution overestimated subcortical volumes and cortical measurements. Cortical thickness in developmental trajectories was influenced by FS and in-plane resolution. Clinical relevance This study provides important guidelines for the fetal MRI community when scanning fetal brains and underscores the necessity of data harmonization of cross-center fetal studies.

4.
Cancers (Basel) ; 16(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39123372

RESUMO

The aim was to explore the performance of dynamic contrast-enhanced (DCE) MRI and diffusion kurtosis imaging (DKI) in differentiating the molecular subtypes of adult-type gliomas. A multicenter MRI study with standardized imaging protocols, including DCE-MRI and DKI data of 81 patients with WHO grade 2-4 gliomas, was performed at six centers. The DCE-MRI and DKI parameter values were quantitatively evaluated in ROIs in tumor tissue and contralateral normal-appearing white matter. Binary logistic regression analyses were performed to differentiate between high-grade (HGG) vs. low-grade gliomas (LGG), IDH1/2 wildtype vs. mutated gliomas, and high-grade astrocytic tumors vs. high-grade oligodendrogliomas. Receiver operating characteristic (ROC) curves were generated for each parameter and for the regression models to determine the area under the curve (AUC), sensitivity, and specificity. Significant differences between tumor groups were found in the DCE-MRI and DKI parameters. A combination of DCE-MRI and DKI parameters revealed the best prediction of HGG vs. LGG (AUC = 0.954 (0.900-1.000)), IDH1/2 wildtype vs. mutated gliomas (AUC = 0.802 (0.702-0.903)), and astrocytomas/glioblastomas vs. oligodendrogliomas (AUC = 0.806 (0.700-0.912)) with the lowest Akaike information criterion. The combination of DCE-MRI and DKI seems helpful in predicting glioma types according to the 2021 World Health Organization's (WHO) classification.

5.
Int J Biol Macromol ; 278(Pt 2): 134532, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142474

RESUMO

Abrus cantoniensis Polysaccharides (ACP) exhibit antioxidant activity and immune-regulatory functions. Abrus cantoniensis Hance widely distributed in the Guangdong and Guangxi regions of China. In this study, this research investigated the impact of phosphorylation modification on the biological activity of ACP, aiming to provide theoretical insights for its development. This research modified ACP through phosphorylation and evaluated changes in its in vitro antioxidant capacity, including free radical scavenging and resistance to cellular oxidative damage. Additionally, this research administered both native ACP and phosphorylated ACP (P-ACP) to mice to assess their protective effects against acute ethanol-induced oxidative injury. This research explored whether these effects were mediated through the Keap1-Nrf2 signaling pathway and their influence on gut microbiota. Results revealed that phosphorylation significantly enhanced ACP's antioxidant capacity and protective effects (p < 0.05). P-ACP improved mice resistance to acute oxidative injury, mitigating the adverse effects of 50 % ethanol (p < 0.05). Moreover, both ACP and P-ACP are involved in modulating the expression of the Keap1-Nrf2 signaling pathway and, to some extent, alter the composition of the gut microbiota in mice. In summary, phosphorylation modification effectively enhances ACP's antioxidant capacity and provides better protection against acute oxidative injury in mice.


Assuntos
Abrus , Antioxidantes , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Polissacarídeos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Camundongos , Fosforilação/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Abrus/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Etanol/química
6.
Acad Radiol ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39025700

RESUMO

RATIONALE AND OBJECTIVES: To develop and validate a clinical-radiomics model of dynamic contrast-enhanced MRI (DCE-MRI) for the preoperative discrimination of Vessels encapsulating tumor clusters (VETC)- microvascular invasion (MVI) and prognosis of hepatocellular carcinoma (HCC). MATERIALS AND METHODS: 219 HCC patients from Institution 1 were split into internal training and validation groups, with 101 patients from Institution 2 assigned to external validation. Histologically confirmed VETC-MVI pattern categorizing HCC into VM-HCC+ (VETC+/MVI+, VETC-/MVI+, VETC+/MVI-) and VM-HCC- (VETC-/MVI-). The regions of intratumor and peritumor were segmented manually in the arterial, portal-venous and delayed phase (AP, PP, and DP, respectively) of DCE-MRI. Six radiomics models (intratumor and peritumor in AP, PP, and DP of DCE-MRI) and one clinical model were developed for assessing VM-HCC. Establishing intra-tumoral and peri-tumoral models through combining intratumor and peritumor features. The best-performing radiomics model and the clinical model were then integrated to create a Combined model. RESULTS: In institution 1, pathological VM-HCC+ were confirmed in 88 patients (training set: 61, validation set: 27). In internal testing, the Combined model had an AUC of 0.85 (95% CI: 0.76-0.93), which reached an AUC of 0.75 (95% CI: 0.66-0.85) in external validation. The model's predictions were associated with early recurrence and progression-free survival in HCC patients. CONCLUSIONS: The clinical-radiomics model offers a non-invasive approach to discern VM-HCC and predict HCC patients' prognosis preoperatively, which could offer clinicians valuable insights during the decision-making phase.

7.
Front Oncol ; 14: 1408524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846972

RESUMO

The incidence of leiomyosarcoma (LMS) is about 4-5/100,000 individuals per year. LMSs occurring in the small bowel are even rarer, and their preoperative diagnosis is very difficult. We described two patients with pathologically confirmed small bowel LMS and analyzed their clinical and medical imaging features. Similar cases reported in English in Pubmed database over the past decade were reviewed and summarized. These tumors were categorized by the growth direction and relationship with the intestinal lumen into three types: intraluminal (n = 10), intermural (n = 3), and extraluminal (n = 7). Notably, among the three types of LMS, the intramural leiomyosarcoma stands out as a noteworthy subtype. Emerging evidence suggests that smaller tumor size (< 5 cm) and the intraluminal type may serve as favorable prognostic indicators, while the extraluminal type is associated with relatively poor prognosis. Furthermore, the integration of imaging features with CA125 and LDH biomarkers holds promise for potential diagnostic value in LMS.

8.
Medicine (Baltimore) ; 103(25): e38276, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905426

RESUMO

The split filter CT can filter X-ray beam. Theoretically, the split filter CT not only provides a good low-energy beam, but also provides a more robust CT value. The aim of this study was to compare conventional single-energy computed tomography (SECT) and twin-beam dual-energy (TBDE) CT regarding the quantitative consistency and stabilities of HU measurements at different abdominal organs. Forty-four patients were prospectively enrolled to randomly receive SECT and TBDE protocols at either body part of a thorax-abdominal examination. Their overlapping scan coverage was subjected to further image analysis. For TBDE scans, composed images(c-images) and virtual monoenergetic images (VMIs) at 60, 70, 80, and 90 kiloelectron volt (keV) were reconstructed. The attenuations were measured at 5 abdominal organs and compared between SECT and TBDE to characterize quantitative consistency by intraclass correlation coefficients (ICCs), whereas their standard deviations were used to assess the Hounsfield Unit (HU) stability. The c-images, 70 keV and 80 keV VMIs from TBDE provided consistent HU values (all ICCs > 0.8) with the SECT measurements; moreover, these TBDE images had superior HU stability over SECT images in all abdominal measurements except for fat tissue. The best HU stability can be achieved in 80 keV VMIs with the lowest noise level. The c-images and VMIs derived from TBDE can produce consistent values as SECT. The 80 keV images displayed better HU stability and a lower noise level across various abdominal organs.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Feminino , Masculino , Tomografia Computadorizada por Raios X/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Idoso , Adulto , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Radiografia Abdominal/métodos
9.
Nature ; 629(8013): 810-818, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778234

RESUMO

Accurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow1, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording2. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow. The 2 MHz ultrasound waves reduce the attenuation and phase aberration caused by the skull, and the copper mesh shielding layer provides conformal contact to the skin while improving the signal-to-noise ratio by 5 dB. Ultrafast ultrasound imaging based on diverging waves can accurately render the circle of Willis in 3D and minimize human errors during examinations. Focused ultrasound waves allow the recording of blood flow spectra at selected locations continuously. The high accuracy of the conformal ultrasound patch was confirmed in comparison with a conventional TCD probe on 36 participants, showing a mean difference and standard deviation of difference as -1.51 ± 4.34 cm s-1, -0.84 ± 3.06 cm s-1 and -0.50 ± 2.55 cm s-1 for peak systolic velocity, mean flow velocity, and end diastolic velocity, respectively. The measurement success rate was 70.6%, compared with 75.3% for a conventional TCD probe. Furthermore, we demonstrate continuous blood flow spectra during different interventions and identify cascades of intracranial B waves during drowsiness within 4 h of recording.


Assuntos
Velocidade do Fluxo Sanguíneo , Encéfalo , Circulação Cerebrovascular , Ultrassonografia , Humanos , Velocidade do Fluxo Sanguíneo/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Erros Médicos , Razão Sinal-Ruído , Pele , Crânio , Sonolência/fisiologia , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Adulto
10.
IEEE Trans Med Imaging ; PP2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781068

RESUMO

Multiple Instance Learning (MIL) has demonstrated promise in Whole Slide Image (WSI) classification. However, a major challenge persists due to the high computational cost associated with processing these gigapixel images. Existing methods generally adopt a two-stage approach, comprising a non-learnable feature embedding stage and a classifier training stage. Though it can greatly reduce memory consumption by using a fixed feature embedder pre-trained on other domains, such a scheme also results in a disparity between the two stages, leading to suboptimal classification accuracy. To address this issue, we propose that a bag-level classifier can be a good instance-level teacher. Based on this idea, we design Iteratively Coupled Multiple Instance Learning (ICMIL) to couple the embedder and the bag classifier at a low cost. ICMIL initially fixes the patch embedder to train the bag classifier, followed by fixing the bag classifier to fine-tune the patch embedder. The refined embedder can then generate better representations in return, leading to a more accurate classifier for the next iteration. To realize more flexible and more effective embedder fine-tuning, we also introduce a teacher-student framework to efficiently distill the category knowledge in the bag classifier to help the instance-level embedder fine-tuning. Intensive experiments were conducted on four distinct datasets to validate the effectiveness of ICMIL. The experimental results consistently demonstrated that our method significantly improves the performance of existing MIL backbones, achieving state-of-the-art results. The code and the organized datasets can be accessed by: https://github.com/Dootmaan/ICMIL/tree/confidence-based.

12.
IEEE J Biomed Health Inform ; 28(8): 4737-4750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38768004

RESUMO

Although contrast-enhanced computed tomography (CE-CT) images significantly improve the accuracy of diagnosing focal liver lesions (FLLs), the administration of contrast agents imposes a considerable physical burden on patients. The utilization of generative models to synthesize CE-CT images from non-contrasted CT images offers a promising solution. However, existing image synthesis models tend to overlook the importance of critical regions, inevitably reducing their effectiveness in downstream tasks. To overcome this challenge, we propose an innovative CE-CT image synthesis model called Segmentation Guided Crossing Dual Decoding Generative Adversarial Network (SGCDD-GAN). Specifically, the SGCDD-GAN involves a crossing dual decoding generator including an attention decoder and an improved transformation decoder. The attention decoder is designed to highlight some critical regions within the abdominal cavity, while the improved transformation decoder is responsible for synthesizing CE-CT images. These two decoders are interconnected using a crossing technique to enhance each other's capabilities. Furthermore, we employ a multi-task learning strategy to guide the generator to focus more on the lesion area. To evaluate the performance of proposed SGCDD-GAN, we test it on an in-house CE-CT dataset. In both CE-CT image synthesis tasks-namely, synthesizing ART images and synthesizing PV images-the proposed SGCDD-GAN demonstrates superior performance metrics across the entire image and liver region, including SSIM, PSNR, MSE, and PCC scores. Furthermore, CE-CT images synthetized from our SGCDD-GAN achieve remarkable accuracy rates of 82.68%, 94.11%, and 94.11% in a deep learning-based FLLs classification task, along with a pilot assessment conducted by two radiologists.


Assuntos
Meios de Contraste , Fígado , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Fígado/diagnóstico por imagem , Redes Neurais de Computação , Algoritmos , Neoplasias Hepáticas/diagnóstico por imagem , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos
13.
Front Oncol ; 14: 1348678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585004

RESUMO

Objective: To establish a radiomics model based on intratumoral and peritumoral features extracted from pre-treatment CT to predict the major pathological response (MPR) in patients with non-small cell lung cancer (NSCLC) receiving neoadjuvant immunochemotherapy. Methods: A total of 148 NSCLC patients who underwent neoadjuvant immunochemotherapy from two centers (SRRSH and ZCH) were retrospectively included. The SRRSH dataset (n=105) was used as the training and internal validation cohort. Radiomics features of intratumoral (T) and peritumoral regions (P1 = 0-5mm, P2 = 5-10mm, and P3 = 10-15mm) were extracted from pre-treatment CT. Intra- and inter- class correlation coefficients and least absolute shrinkage and selection operator were used to feature selection. Four single ROI models mentioned above and a combined radiomics (CR: T+P1+P2+P3) model were established by using machine learning algorithms. Clinical factors were selected to construct the combined radiomics-clinical (CRC) model, which was validated in the external center ZCH (n=43). The performance of the models was assessed by DeLong test, calibration curve and decision curve analysis. Results: Histopathological type was the only independent clinical risk factor. The model CR with eight selected radiomics features demonstrated a good predictive performance in the internal validation (AUC=0.810) and significantly improved than the model T (AUC=0.810 vs 0.619, p<0.05). The model CRC yielded the best predictive capability (AUC=0.814) and obtained satisfactory performance in the independent external test set (AUC=0.768, 95% CI: 0.62-0.91). Conclusion: We established a CRC model that incorporates intratumoral and peritumoral features and histopathological type, providing an effective approach for selecting NSCLC patients suitable for neoadjuvant immunochemotherapy.

14.
Front Microbiol ; 15: 1382639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577686

RESUMO

Polysaccharides are generally considered to have immune enhancing functions, and mulberry leaf polysaccharide is the main active substance in mulberry leaves, while there are few studies on whether mulberry leaf polysaccharide (MLP) has an effect on immunosuppression and intestinal damage caused by cyclophosphamide (CTX), we investigated whether MLP has an ameliorative effect on intestinal damage caused by CTX. A total of 210 1-day-old Mahuang cocks were selected for this experiment. Were equally divided into six groups and used to evaluate the immune effect of MLP. Our results showed that MLP significantly enhanced the growth performance of chicks and significantly elevated the secretion of cytokines (IL-1ß, IL-10, IL-6, TNF-α, and IFN-γ), immunoglobulins and antioxidant enzymes in the serum of immunosuppressed chicks. It attenuated jejunal damage and elevated the expression of jejunal tight junction proteins Claudin1, Zo-1 and MUC2, which protected intestinal health. MLP activated TLR4-MyD88-NF-κB pathway and enhanced the expression of TLR4, MyD88 and NF-κB, which served to protect the intestine. 16S rDNA gene high-throughput sequencing showed that MLP increased species richness, restored CTX-induced gut microbiome imbalance, and enhanced the abundance of probiotic bacteria in the gut. MLP improves cyclophosphamide-induced growth inhibition and intestinal damage in chicks by modulating intestinal flora and enhancing immune regulation and antioxidant capacity. In conclusion, this study provides a scientific basis for MLP as an immune enhancer to regulate chick intestinal flora and protect chick intestinal mucosal damage.

15.
Radiology ; 310(3): e232388, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470238

RESUMO

Background Right atrial (RA) function strain is increasingly acknowledged as an important predictor of adverse events in patients with diverse cardiovascular conditions. However, the prognostic value of RA strain in patients with dilated cardiomyopathy (DCM) remains uncertain. Purpose To evaluate the prognostic value of RA strain derived from cardiac MRI (CMR) feature tracking (FT) in patients with DCM. Materials and Methods This multicenter, retrospective study included consecutive adult patients with DCM who underwent CMR between June 2010 and May 2022. RA strain parameters were obtained using CMR FT. The primary end points were sudden or cardiac death or heart transplant. Cox regression analysis was used to determine the association of variables with outcomes. Incremental prognostic value was evaluated using C indexes and likelihood ratio tests. Results A total of 526 patients with DCM (mean age, 51 years ± 15 [SD]; 381 male) were included. During a median follow-up of 41 months, 79 patients with DCM reached the primary end points. At univariable analysis, RA conduit strain was associated with the primary end points (hazard ratio [HR], 0.82 [95% CI: 0.76, 0.87]; P < .001). In multivariable Cox analysis, RA conduit strain was an independent predictor for the primary end points (HR, 0.83 [95% CI: 0.77, 0.90]; P < .001). A model combining RA conduit strain with other clinical and conventional imaging risk factors (C statistic, 0.80; likelihood ratio, 92.54) showed improved discrimination and calibration for the primary end points compared with models with clinical variables (C statistic, 0.71; likelihood ratio, 37.12; both P < .001) or clinical and imaging variables (C statistic, 0.75; likelihood ratio, 64.69; both P < .001). Conclusion CMR FT-derived RA conduit strain was an independent predictor of adverse outcomes among patients with DCM, providing incremental prognostic value when combined in a model with clinical and conventional CMR risk factors. Published under a CC BY 4.0 license. Supplemental material is available for this article.


Assuntos
Cardiomiopatia Dilatada , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Cardiomiopatia Dilatada/diagnóstico por imagem , Função do Átrio Direito , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Radiografia
16.
Liver Int ; 44(6): 1351-1362, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436551

RESUMO

BACKGROUND AND AIMS: Accurate preoperative prediction of microvascular invasion (MVI) and recurrence-free survival (RFS) is vital for personalised hepatocellular carcinoma (HCC) management. We developed a multitask deep learning model to predict MVI and RFS using preoperative MRI scans. METHODS: Utilising a retrospective dataset of 725 HCC patients from seven institutions, we developed and validated a multitask deep learning model focused on predicting MVI and RFS. The model employs a transformer architecture to extract critical features from preoperative MRI scans. It was trained on a set of 234 patients and internally validated on a set of 58 patients. External validation was performed using three independent sets (n = 212, 111, 110). RESULTS: The multitask deep learning model yielded high MVI prediction accuracy, with AUC values of 0.918 for the training set and 0.800 for the internal test set. In external test sets, AUC values were 0.837, 0.815 and 0.800. Radiologists' sensitivity and inter-rater agreement for MVI prediction improved significantly when integrated with the model. For RFS, the model achieved C-index values of 0.763 in the training set and ranged between 0.628 and 0.728 in external test sets. Notably, PA-TACE improved RFS only in patients predicted to have high MVI risk and low survival scores (p < .001). CONCLUSIONS: Our deep learning model allows accurate MVI and survival prediction in HCC patients. Prospective studies are warranted to assess the clinical utility of this model in guiding personalised treatment in conjunction with clinical criteria.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Imageamento por Ressonância Magnética , Invasividade Neoplásica , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Microvasos/diagnóstico por imagem , Microvasos/patologia , Intervalo Livre de Doença , Recidiva Local de Neoplasia
17.
BMC Cancer ; 24(1): 280, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429653

RESUMO

OBJECTIVE: The risk category of gastric gastrointestinal stromal tumors (GISTs) are closely related to the surgical method, the scope of resection, and the need for preoperative chemotherapy. We aimed to develop and validate convolutional neural network (CNN) models based on preoperative venous-phase CT images to predict the risk category of gastric GISTs. METHOD: A total of 425 patients pathologically diagnosed with gastric GISTs at the authors' medical centers between January 2012 and July 2021 were split into a training set (154, 84, and 59 with very low/low, intermediate, and high-risk, respectively) and a validation set (67, 35, and 26, respectively). Three CNN models were constructed by obtaining the upper and lower 1, 4, and 7 layers of the maximum tumour mask slice based on venous-phase CT Images and models of CNN_layer3, CNN_layer9, and CNN_layer15 established, respectively. The area under the receiver operating characteristics curve (AUROC) and the Obuchowski index were calculated to compare the diagnostic performance of the CNN models. RESULTS: In the validation set, CNN_layer3, CNN_layer9, and CNN_layer15 had AUROCs of 0.89, 0.90, and 0.90, respectively, for low-risk gastric GISTs; 0.82, 0.83, and 0.83 for intermediate-risk gastric GISTs; and 0.86, 0.86, and 0.85 for high-risk gastric GISTs. In the validation dataset, CNN_layer3 (Obuchowski index, 0.871) provided similar performance than CNN_layer9 and CNN_layer15 (Obuchowski index, 0.875 and 0.873, respectively) in prediction of the gastric GIST risk category (All P >.05). CONCLUSIONS: The CNN based on preoperative venous-phase CT images showed good performance for predicting the risk category of gastric GISTs.


Assuntos
Tumores do Estroma Gastrointestinal , Neoplasias Gástricas , Humanos , Tumores do Estroma Gastrointestinal/diagnóstico por imagem , Tumores do Estroma Gastrointestinal/cirurgia , Tomografia Computadorizada por Raios X/métodos , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/cirurgia , Redes Neurais de Computação , Curva ROC
18.
Biomed Phys Eng Express ; 10(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38457851

RESUMO

Contrast-enhanced computed tomography (CE-CT) images are vital for clinical diagnosis of focal liver lesions (FLLs). However, the use of CE-CT images imposes a significant burden on patients due to the injection of contrast agents and extended shooting. Deep learning-based image synthesis models offer a promising solution that synthesizes CE-CT images from non-contrasted CT (NC-CT) images. Unlike natural images, medical image synthesis requires a specific focus on certain organs or localized regions to ensure accurate diagnosis. Determining how to effectively emphasize target organs poses a challenging issue in medical image synthesis. To solve this challenge, we present a novel CE-CT image synthesis model called, Organ-Aware Generative Adversarial Network (OA-GAN). The OA-GAN comprises an organ-aware (OA) network and a dual decoder-based generator. First, the OA network learns the most discriminative spatial features about the target organ (i.e. liver) by utilizing the ground truth organ mask as localization cues. Subsequently, NC-CT image and captured feature are fed into the dual decoder-based generator, which employs a local and global decoder network to simultaneously synthesize the organ and entire CECT image. Moreover, the semantic information extracted from the local decoder is transferred to the global decoder to facilitate better reconstruction of the organ in entire CE-CT image. The qualitative and quantitative evaluation on a CE-CT dataset demonstrates that the OA-GAN outperforms state-of-the-art approaches for synthesizing two types of CE-CT images such as arterial phase and portal venous phase. Additionally, subjective evaluations by expert radiologists and a deep learning-based FLLs classification also affirm that CE-CT images synthesized from the OA-GAN exhibit a remarkable resemblance to real CE-CT images.


Assuntos
Artérias , Fígado , Humanos , Fígado/diagnóstico por imagem , Semântica , Tomografia Computadorizada por Raios X
19.
Heliyon ; 10(6): e27419, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545226

RESUMO

Objectives: To investigate gadolinium deposition in the liver and brain in a rat model with liver fibrosis (LF) after intravenous administration of gadoxetate disodium (GD) and the histological effects of gadolinium deposition in the liver and brain. Methods: Adult male Sprague-Dawley rats were randomly assigned to one of the three groups: 1) LF group received intraperitoneal injection of carbon tetrachloride (CCl4) for 9 weeks alone; 2) LF&GD group received CCl4 and intravenous administration of GD (for 5 consecutive days); 3) GD group received olive oil and GD. Seven days after the final injection of GD, the deep cerebellar nuclei (DCN) and liver were excised to determine gadolinium concentrations via inductively coupled plasma mass spectrometry, and histologic staining was performed. Bonferroni's post-hoc test and Wilcoxon rank sum test were used to compare the differences between the three groups. Results: The concentrations of retained gadolinium in the liver in the LF&GD group (2.18 ± 0.44 µg/g) were significantly greater compared to the LF group (0.02 ± 0.01 µg/g, P < 0.001) and GD group (0.37 ± 0.11 µg/g, P < 0.001). Also, the concentrations of retained gadolinium in DCN were increased in the LF&GD group (0.13 ± 0.06 µg/g) compared to the LF group (0.01 ± 0.00 µg/g, P < 0.001) and GD group (0.06 ± 0.02 µg/g, P = 0.019). No histopathological alterations were detected in the liver and DCN between LF&GD group and LF group. Conclusions: LF aggravated gadolinium deposition in the liver and DCN after administration of GD. However, no significant acute histological alterations were observed due to gadolinium deposition.

20.
Neurol Sci ; 45(7): 3093-3105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38381393

RESUMO

Post-sepsis psychiatric disorder, encompassing anxiety, depression, post-traumatic stress disorder and delirium, is a highly prevalent complication secondary to sepsis, resulting in a marked increase in long-term mortality among affected patients. Regrettably, psychiatric impairment associated with sepsis is frequently disregarded by clinicians. This review aims to summarize recent advancements in the understanding of the pathophysiology, prevention, and treatment of post-sepsis mental disorder, including coronavirus disease 2019-related psychiatric impairment. The pathophysiology of post-sepsis psychiatric disorder is complex and is known to involve blood-brain barrier disruption, overactivation of the hypothalamic-pituitary-adrenal axis, neuroinflammation, oxidative stress, neurotransmitter dysfunction, programmed cell death, and impaired neuroplasticity. No unified diagnostic criteria for this disorder are currently available; however, screening scales are often applied in its assessment. Modifiable risk factors for psychiatric impairment post-sepsis include the number of experienced traumatic memories, the length of ICU stay, level of albumin, the use of vasopressors or inotropes, daily activity function after sepsis, and the cumulative dose of dobutamine. To contribute to the prevention of post-sepsis psychiatric disorder, it may be beneficial to implement targeted interventions for these modifiable risk factors. Specific therapies for this condition remain scarce. Nevertheless, non-pharmacological approaches, such as comprehensive nursing care, may provide a promising avenue for treating psychiatric disorder following sepsis. In addition, although several therapeutic drugs have shown preliminary efficacy in animal models, further confirmation of their potential is required through follow-up clinical studies.


Assuntos
Transtornos Mentais , Sepse , Humanos , COVID-19/complicações , Delírio/etiologia , Delírio/terapia , Delírio/prevenção & controle , Delírio/fisiopatologia , Transtornos Mentais/etiologia , Transtornos Mentais/terapia , SARS-CoV-2 , Sepse/complicações , Sepse/fisiopatologia , Sepse/terapia , Transtornos de Estresse Pós-Traumáticos/terapia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...