Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15516, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969651

RESUMO

The intelligent appearance quality classification method for Auricularia auricula is of great significance to promote this industry. This paper proposes an appearance quality classification method for Auricularia auricula based on the improved Faster Region-based Convolutional Neural Networks (improved Faster RCNN) framework. The original Faster RCNN is improved by establishing a multiscale feature fusion detection model to improve the accuracy and real-time performance of the model. The multiscale feature fusion detection model makes full use of shallow feature information to complete target detection. It fuses shallow features with rich detailed information with deep features rich in strong semantic information. Since the fusion algorithm directly uses the existing information of the feature extraction network, there is no additional calculation. The fused features contain more original detailed feature information. Therefore, the improved Faster RCNN can improve the final detection rate without sacrificing speed. By comparing with the original Faster RCNN model, the mean average precision (mAP) of the improved Faster RCNN is increased by 2.13%. The average precision (AP) of the first-level Auricularia auricula is almost unchanged at a high level. The AP of the second-level Auricularia auricula is increased by nearly 5%. And the third-level Auricularia auricula AP is increased by 1%. The improved Faster RCNN improves the frames per second from 6.81 of the original Faster RCNN to 13.5. Meanwhile, the influence of complex environment and image resolution on the Auricularia auricula detection is explored.


Assuntos
Aprendizado Profundo , Algoritmos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Humanos
2.
MycoKeys ; 105: 267-294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855321

RESUMO

Panus is a typical wood-rotting fungi, which plays considerable roles in ecosystems and has significant economic value. The genus Panus currently consists of more than 100 species; however, only eight species have been reported from China. This study aims to distinguish and describe two novel species from the Panussimilis complex, namely Panusminisporus and Panusbaishanzuensis, one new record species from Zhejiang Province, Panussimilis and three common species, Panusconchatus, Panusneostrigosus and Panusrudis, based on detailed morphological and phylogenetic studies, relying on Chinese specimens. Panusminisporus is characterised by its reddish-brown pileus, decurrent lamellae with cross-veins, slender stipe, smaller basidiospores, wider generative hyphae and absence of sclerocystidia. Panusbaishanzuensis is featured by its pileus with concentric and darker ring zone, decurrent lamellae with cross-veins, shorter stipe, longer basidiospores, diverse and shorter cheilocystidia and smaller sclerocystidia. Internal transcribed spacer (ITS) regions, large subunit nuclear ribosomal RNA gene (nLSU) and translation elongation factor 1-α gene (tef-1α) were employed to perform a thorough phylogenetic analysis for genus Panus and related genera, using Bayesian Inference and Maximum Likelihood analysis. The results indicate that Panusminisporus and Panusbaishanzuensis form two independent clades within the Panussimilis complex themselves. Detailed descriptions, taxonomic notes, illustrations etc. were provided. In addition, a key to the reported species of Panus from China is also provided.

3.
J Perianesth Nurs ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38878034

RESUMO

PURPOSE: The purpose of this study was to compare the effect of ultrasound-guided continuous erector spinae plane block to continuous thoracic paravertebral block on postoperative analgesia in elderly patients who underwent thoracoscopic lobectomy. DESIGN: Randomized controlled trial. METHODS: Elderly patients (N = 50) who underwent nonemergent thoracoscopic lobectomy in the thoracic surgery department of our hospital from January 2019 to December 2020 were selected and randomly divided into continuous erector spinae block (ESPB; n = 25) group and continuous thoracic paravertebral block (TPVB; n = 25) group. The patients in the two groups were guided by ultrasound with ESPB or TPVB before anesthesia induction. The visual analog scale at rest and cough in 2 hours, 6 hours, 8 hours, 12 hours, 24 hours, 48 hours after surgery, the supplementary analgesic dosage of tramadol, time of tube placement, the stay time in postanesthesia care unit (PACU), the first ambulation time after surgery, the length of postoperative hospital stay and postoperative complications were recorded. FINDINGS: There were no significant differences between the two groups in visual analog scale score at rest and cough at each time point and supplementary analgesic dosage of tramadol within 48 hours after surgery (P > .05). The time of tube placement and the postoperative hospital stay in ESPB group was significantly shorter than that in TPVB group (P < .05). There were no differences in PACU residence time and first ambulation time between the two groups (P > .05). There were 4 patients in TPVB group and 2 patients in ESPB group who had nausea and vomiting (P > .05), 1 case of pneumothorax and 1 case of fever in the TPVB group. There were no incision infections or respiratory depression requiring clinical intervention in either group. CONCLUSIONS: Both ESPB and TPVB alleviated the patients postoperative pain effectively for elderly patients underwent thoracoscopic lobectomy. Compared with TPVB, patients with ESPB have a shorter tube placement time, fewer complications and faster postoperative recovery.

4.
Sci Transl Med ; 16(752): eabq7074, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896602

RESUMO

Epidermal growth factor receptor inhibitors (EGFRis) are used to treat many cancers, but their use is complicated by the development of a skin rash that may be severe, limiting their use and adversely affecting patient quality of life. Most studies of EGFRi-induced rash have focused on the fully developed stage of this skin disorder, and early pathological changes remain unclear. We analyzed high-throughput transcriptome sequencing of skin samples from rats exposed to the EGFRi afatinib and identified that keratinocyte activation is an early pathological alteration in EGFRi-induced rash. Mechanistically, the induction of S100 calcium-binding protein A9 (S100A9) occurred before skin barrier disruption and led to keratinocyte activation, resulting in expression of specific cytokines, chemokines, and surface molecules such as interleukin 6 (Il6) and C-C motif chemokine ligand 2 (CCL2) to recruit and activate monocytes through activation of the Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway, further recruiting more immune cells. Topical JAK inhibition suppressed the recruitment of immune cells and ameliorated the severity of skin rash in afatinib-treated rats and mice with epidermal deletion of EGFR, while having no effect on EGFRi efficacy in tumor-bearing mice. In a pilot clinical trial (NCT05120362), 11 patients with EGFRi-induced rash were treated with delgocitinib ointment, resulting in improvement in rash severity by at least one grade in 10 of them according to the MASCC EGFR inhibitor skin toxicity tool (MESTT) criteria. These findings provide a better understanding of the early pathophysiology of EGFRi-induced rash and suggest a strategy to manage this condition.


Assuntos
Receptores ErbB , Exantema , Inibidores de Janus Quinases , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos , Administração Tópica , Afatinib/farmacologia , Afatinib/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Exantema/induzido quimicamente , Exantema/patologia , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/metabolismo , Janus Quinases/antagonistas & inibidores , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Estudos Prospectivos
5.
Bioresour Technol ; 406: 130990, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885727

RESUMO

Chemoautotrophs, the crucial contributors to biological carbon fixation, derive energy from reducing specific inorganic substances and utilize CO2 for growth. However, the release of extracellular free organic carbon (EFOC) by chemoautotrophic microorganisms can inhibit their own growth and metabolism. To reduce the feedback inhibition effect, a low-release biochar (BC-LR) was applied to adsorb EFOC. BC-LR not only adsorbed EFOC, but also selectively adsorbed the main inhibitory component, low molecular weight organics, in EFOC. In contrast, ordinary biochar could not effectively adsorb EFOC and its addition inhibited microbial growth and CO2 fixation. In Transwell culture, BC-LR promoted microbial growth by 190% and CO2 fixation by 29%, and exhibited better economic advantage, when compared with granular activated carbon. These findings provide a novel insight into the interaction between biochar and autotrophic microbial metabolism, offering an economically feasible approach to mitigate feedback inhibition of metabolites and promoting biological CO2 fixation.


Assuntos
Dióxido de Carbono , Carvão Vegetal , Dióxido de Carbono/metabolismo , Carvão Vegetal/farmacologia , Carvão Vegetal/química , Ciclo do Carbono , Adsorção , Retroalimentação Fisiológica , Carbono/farmacologia , Carbono/metabolismo
6.
Environ Sci Pollut Res Int ; 31(24): 35553-35566, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38733444

RESUMO

Volatile organic compounds (VOCs) frequently pose a threat to the biosphere, impacting ecosystems, flora, fauna, and the surrounding environment. Industrial emissions of VOCs often include the presence of water vapor, which, in turn, diminishes the adsorption capacity and efficacy of adsorbents. This occurs due to the competitive adsorption of water vapor, which competes with target pollutants for adsorption sites on the adsorbent material. In this study, hydrophobic activated carbons (BMIMPF6-AC (L), BMIMPF6-AC (g), and BMIMPF6-AC-H) were successfully prepared using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) to adsorb toluene under humidity environment. The adsorption performance and mechanism of the resulting ionic liquid-modified activated carbon for toluene in a high-humidity environment were evaluated to explore the potential application of ionic liquids as hydrophobic modifiers. The results indicated that BMIMPF6-AC-H exhibited superior hydrophobicity. The toluene adsorption capacity of BMIMPF6-AC-H was 1.53 times higher than that of original activated carbon, while the adsorption capacity for water vapor was only 37.30% of it at 27 °C and 77% RH. The Y-N model well-fitted the dynamic adsorption experiments. To elucidate the microscopic mechanism of hydrophobic modification, the Independent Gradient Model (IGM) method was employed to characterize the intermolecular interactions between BMIMPF6 and toluene. Overall, this study introduces a new modifier for hydrophobic modification of activated carbon, which could enhance the efficiency of activated carbon in treating industrial VOCs.


Assuntos
Umidade , Líquidos Iônicos , Tolueno , Compostos Orgânicos Voláteis , Líquidos Iônicos/química , Adsorção , Tolueno/química , Compostos Orgânicos Voláteis/química , Carvão Vegetal/química , Poluentes Atmosféricos/química , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química
7.
J Hazard Mater ; 472: 134499, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38759282

RESUMO

Cl- activated peroxymonosulfate (PMS) oxidation technology can effectively degrade pollutants, but the generation of chlorinated disinfection byproducts (DBPs) limits the application of this technology in water treatment. In this study, a method of nanobubbles (NBs) synergistic Cl-/PMS system was designed to try to improve this technology. The results showed the synergistic effects of NBs/Cl-/PMS were significant and universal while its upgrade rate was from 12.89% to 34.97%. Moreover, the synergistic effects can be further improved by increasing the concentration and Zeta potential of NBs. The main synergistic effects of NBs/Cl-/PMS system were due to the electrostatic attraction of negatively charged NBs to Na+ from NaCl, K+ from PMS, and H+ from phenol, which acted as a "bridge" between Cl- and HSO5- as well as phenol and Cl-/HSO5-, increasing active substance concentration. In addition, the addition of NBs completely changed the oxidation system of Cl-/PMS from one that increases environmental toxicity to one that reduces it. The reason was that the electrostatic attraction of NBs changed the active sites and degradation pathway of phenol, greatly reducing the production of highly toxic DBPs. This study developed a novel environmentally friendly oxidation technology, which provides an effective strategy to reduce the generation of DBPs in the Cl-/PMS system.

8.
Angew Chem Int Ed Engl ; 63(32): e202407277, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38780892

RESUMO

Chiral multi-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials hold promise for circularly polarized organic light-emitting diodes (CP-OLEDs) and 3D displays. Herein, we present two pairs of tetraborated intrinsically axial CP-MR-TADF materials, R/S-BDBF-BOH and R/S-BDBT-BOH, with conjugation-extended bidibenzo[b,d]furan and bidibenzo[b,d]thiophene as chiral sources, which effectively participate in the distribution of the frontier molecular orbitals. Due to the heavy-atom effect, sulfur atoms are introduced to accelerate the reverse intersystem crossing process and increase the efficiency of molecules. R/S-BDBF-BOH and R/S-BDBT-BOH manifest ultra-pure blue emission with a maximum at 458/459 nm with a full width at half maximum of 27 nm, photoluminescence quantum yields of 90 %/91 %, and dissymmetry factors (|gPL|) of 6.8×10-4/8.5×10-4, respectively. Correspondingly, the CP-OLEDs exhibit good performances with an external quantum efficiency of 30.1 % and |gEL| factors of 1.2×10-3.

10.
J Hazard Mater ; 469: 133911, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430597

RESUMO

The activation of peracetic acid (PAA) by activated carbon (AC) is a promising approach for reducing micropollutants in groundwater. However, to harness the PAA/AC system's potential and achieve sustainable and low-impact groundwater remediation, it is crucial to quantify the individual contributions of active species. In this study, we developed a combined degradation kinetic and adsorption mass transfer model to elucidate the roles of free radicals, electron transfer processes (ETP), and adsorption on the degradation of antibiotics by PAA in groundwater. Our findings reveal that ETP predominantly facilitated the activation of PAA by modified activated carbon (AC600), contributing to ∼61% of the overall degradation of sulfamethoxazole (SMX). The carbonyl group (CO) on the surface of AC600 was identified as a probable site for the ETP. Free radicals contributed to ∼39% of the degradation, while adsorption was negligible. Thermodynamic and activation energy analyses indicate that the degradation of SMX within the PAA/AC600 system requires a relatively low energy input (27.66 kJ/mol), which is within the lower range of various heterogeneous Fenton-like reactions, thus making it easily achievable. These novel insights enhance our understanding of the AC600-mediated PAA activation mechanism and lay the groundwork for developing efficient and sustainable technologies for mitigating groundwater pollution. ENVIRONMENTAL IMPLICATION: The antibiotics in groundwater raises alarming environmental concerns. As groundwater serves as a primary source of drinking water for nearly half the global population, the development of eco-friendly technologies for antibiotic-contaminated groundwater remediation becomes imperative. The innovative PAA/AC600 system demonstrates significant efficacy in degrading micropollutants, particularly sulfonamide antibiotics. By integrating degradation kinetics and adsorption mass transfer models, this study sheds light on the intricate mechanisms involved, emphasizing the potential of carbon materials as sustainable tools in the ongoing battle for clean and safe groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Antibacterianos , Ácido Peracético , Oxirredução , Carvão Vegetal , Adsorção , Elétrons , Peróxido de Hidrogênio , Sulfametoxazol
11.
MycoKeys ; 103: 37-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516363

RESUMO

The Calocybe species possess notable economic and medicinal value, demonstrating substantial potential for resource utilization. The taxonomic studies of Calocybe are lacking in quality and depth. Based on the specimens collected from northeast China, this study provides a detailed description of two newly discovered species, namely Calocybebetulicola and Calocybecystidiosa, as well as two commonly found species, Calocybedecolorata and Calocybeionides. Additionally, a previously unrecorded species, C.decolorata, has recently been discovered in Jilin Province, China. The two newly discovered species can be accurately distinguished from other species within the genus Calocybe based on their distinct morphological characteristics. The primary distinguishing features of C.betulicola include its grayish-purple pileus, grayish-brown to dark purple stipe, smaller basidiomata, absence of cellular pileipellis, and its habitat on leaf litter within birch forests. Calocybecystidiosa is distinguished by its growth on the leaf litter of coniferous forests, a flesh-pink pileus, a fibrous stipe with a white tomentose covering at the base, non-cellular pileipellis, larger basidiospores, and the presence of cheilocystidia. The reconstruction of phylogenetic trees using combined ITS, nLSU, and tef1-α sequences, employing maximum likelihood and Bayesian inference analyses, showed that C.betulicola formed a cluster with C.decurrens, while C.cystidiosa clustered with C.vinacea. However, these two clusters formed separate branches themselves, which also supported the results obtained from our morphological studies. A key to the Calocybe species reported from northeast China is provided to facilitate future studies of the genus.

12.
Sci Total Environ ; 922: 171201, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38417506

RESUMO

Mycelial pellets formed by Penicillium thomii ZJJ were applied as efficient biosorbents for the removal of polycyclic aromatic hydrocarbons (PAHs), which are a type of ubiquitous harmful hydrophobic pollutants. The live mycelial pellets were able to remove 93.48 % of pyrene at a concentration of 100 mg/L within 48 h, demonstrating a maximum adsorption capacity of 285.63 mg/g. Meanwhile, the heat-killed one also achieved a removal rate of 65.01 %. Among the six typical PAHs (pyrene, phenanthrene, fluorene, anthracene, fluoranthene, benzo[a]pyrene), the mycelial pellets preferentially adsorbed the high molecular weight PAHs, which also have higher toxicity, resulting in higher removal efficiency. The experimental results showed that the biosorption of mycelial pellets was mainly a spontaneous physical adsorption process that occurred as a monolayer on a homogeneous surface, with mass transfer being the key rate-limiting step. The main adsorption sites on the surface of mycelia were carboxyl and N-containing groups. Extracellular polymeric substances (EPS) produced by mycelial pellets could enhance adsorption, and its coupling with dead mycelia could achieve basically the same removal effect to that of living one. It can be concluded that biosorption by mycelial pellets occurred due to the influence of electrostatic and hydrophobic interactions, consisting of five steps. Furthermore, the potential applicability of mycelial pellets has been investigated considering diverse factors. The mycelia showed high environmental tolerance, which could effectively remove pyrene across a wide range of pH and salt concentration. And pellets diameters and humic acid concentration had a significant effect on microbial adsorption effect. Based on a cost-effectiveness analysis, mycelium pellets were found to be a low-cost adsorbent. The research outcomes facilitate a thorough comprehension of the adsorption process of pyrene by mycelial pellets and their relevant applications, proposing a cost-effective method without potential environmental issues (heat-killed mycelial pellets plus EPS) to removal PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Adsorção , Pirenos , Micélio
13.
Adv Mater ; 36(18): e2311857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38272858

RESUMO

The circularly polarized organic light-emitting diodes (CP-OLEDs) demonstrate promising application in 3D display due to the direct generation of circularly polarized electroluminescence (CPEL). But the chiral luminescence materials face challenges as intricated synthetic route, enantiomeric separation, etc. Herein, fresh CP-OLEDs are designed based on chiral hole transport material instead of chiral emitters. A pair of hole transport enantiomers (R/S-NPACZ) exhibit intense dissymmetry factors (|gPL|) about 5.0 × 10-3. With R/S-NPACZ as hole transport layers, CP-OLEDs are fabricated employing six achiral phosphorescence and thermally activated delayed fluorescence (TADF) materials with different wavelengths, in consistence with the generated CPEL spectra. The CP-OLEDs based on achiral red, green, and blue iridium(III) complexes exhibit external quantum efficiencies (EQEs) of 14.9%, 30.7%, and 14.1% with |gEL| factors of 8.8 × 10-4, 2.3 × 10-3, and 2.0 × 10-3, respectively. Moreover, the devices using achiral blue, blueish-green, and green TADF materials display EQEs of 24.1%, 17.9%, and 25.4% with |gEL| factors of 1.0 × 10-3, 3.6 × 10-3, and 2.2 × 10-3, respectively. As far as known, it is the first example of CP-OLEDs based on chiral hole transport materials, which act as the organic circularly polarizers and have potential to generate CPEL from achiral luminescence materials.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123885, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38245969

RESUMO

Silver nanoparticles (AgNPs) are extensively used as an antibacterial agent, and monitoring the dissolution behavior of AgNPs in native biological environments is critical in both optimizing their performance and regulating their safety. However, current assessment methods rely on sophisticated analytical tools that are off-site and time-consuming with potential underestimations, due to complicated sample preparation. Although localized surface plasmon resonance (LSPR) sensing offers a facile method for the detection of AgNP dissolution, it is limited by low sensitivity and poor nanoparticle stability in native biological environments. Herein, we constructed a highly sensitive and stable LSPR sensor using gold-silver core-shell nanoparticles (Au@AgNPs), in combination with polymeric stabilizing agents, for the direct measurement of the Ag shell dissolution in native biological media. The high sensitivity was attributed to the acute and large LSPR shift generated by bimetallic nanoparticles. The sensor was used for the real-time monitoring of the Ag dissolution of Au@AgNPs during their co-culture with both bacteria and fibroblast cells. The media pH was found to dominate the Ag dissolution process, where Au@AgNPs exhibited bactericidal effects in the bacteria environment with relatively low pH, but they showed little toxicity towards fibroblast cells at pH 7.4. The minimum inhibition concentration of Au@AgNPs for bacterial growth was found similar to that of AgNO3 in terms of released Ag amount. Thus, stabilized Au@AgNPs not only allow the in-situ monitoring of Ag dissolution via LSPR sensing but also constitute an effective antibacterial agent with controlled toxicity, holding great potential for future biomedical and healthcare applications.


Assuntos
Nanopartículas Metálicas , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Prata , Antibacterianos/farmacologia , Ouro
15.
J Hazard Mater ; 465: 133481, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219590

RESUMO

Catalytic ozone (O3) decomposition at ambient temperature is an efficient method to mitigate O3 pollution. However, practical application is hindered by the poor water resistance of catalysts. Herein, Ag-Hollandite (Ag-HMO) with varying Ag+ content was synthesized. Catalysts with more Ag+ exhibited improved efficiency and water-resistance, with the optimal one maintaining 98% O3 conversion at 70% relative humidity (RH) within 8 h. Physicochemical characterizations revealed that Ag+ had entered the tunnel of OMS-2, facilitating oxygen species removal. Notably, enhanced H2O desorption and the complete inhibition of chemisorbed water formation on Ag-HMO were the primary reasons for its high-efficiency O3 conversion across a wide humidity range. The underlying mechanism arises from the charge redistribution induced by the Ag-O interaction within the tunnel, which reduces acidity and modulates hydrophilicity. This study aims to contribute insights for designing catalysts with higher water-resistance.

16.
Ecotoxicol Environ Saf ; 269: 115745, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029583

RESUMO

Magnetic graphene oxide nanocomposites (MGO NPs) have been widely studied in biomedical applications. However, their cytotoxicity and underlying mechanisms remain unclear. In this study, the biosafety of MGO NPs was investigated, and the mechanism involved in ferroptosis was further explored. MGO can produce cytotoxicity in ADSCs, which is dependent on their concentration. Ferroptosis was involved in MGO NP-induced ADSC survival inhibition by increasing total ROS and lipid ROS accumulation as well as regulating the expression levels of ferroptosis-related genes and proteins. GPX4 played a critical role in the MGO NP-induced ADSC ferroptosis process, and overexpressing GPX4 suppressed ferroptosis to increase cell survival. This study provides a theoretical basis for the biosafety management of MGO NPs used in the field of biomedical treatment.


Assuntos
Ferroptose , Grafite , Nanocompostos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ferroptose/genética , Grafite/toxicidade , Óxido de Magnésio , Fenômenos Magnéticos , Nanocompostos/toxicidade , Espécies Reativas de Oxigênio , Animais , Ratos , Células-Tronco Mesenquimais/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
17.
PeerJ ; 11: e16470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38050612

RESUMO

Neolentinus is a significant genus, belonging to Gloeophyllaceae, with important economic and ecological values, which are parasites on decaying wood of broad-leaf or coniferous trees, and will cause brown rot. However, the taxonomic study is lagging behind to other groups of macrofungi, especially in China. In view of this, we conducted morphological and molecular phylogenetic studies on this genus. We have discovered new types of cheilocystidia and with extremely long lamellae in Neolentinus, and, thus proposed it as a new species-Neolentinus longifolius. At the same time, we clarified the distribution of Neolentinus cyathiformis in China and provided a detailed description. Moreover, we also described two common species, viz. Neolentinus lepideus and Neolentinus adhaerens. All the species are described based on the Chinese collections. The key to the reported species of Neolentinus from China is provided. And the phylogeny of Neolentinus from China is reconstructed based on DNA sequences of multiple loci including the internal transcribed spacer (ITS) regions, the large subunit nuclear ribosomal RNA gene (nLSU), and the translation elongation factor 1-α gene (tef-1α). In addition, full morphological descriptions, illustrations, color photographs, taxonomic notes, and all the available sequences of Neolentinus species are provided.


Assuntos
Madeira , Filogenia , China
18.
Front Microbiol ; 14: 1264699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928660

RESUMO

Green mold disease, caused by Trichoderma spp., is one of the most devastating diseases of mushrooms in China. The application of fungicides remains one of the important control methods among the integrated pest management tools for disease management in mushroom farms. This study aimed to identify Trichoderma spp., isolated from G. sichuanense fruiting bodies displaying green mold symptoms collected from mushroom farms in Zhejiang, Hubei, and Jilin Province, China, and evaluate their in vitro sensitivity to six fungicides. A total of 47 isolates were obtained and classified into nine Trichoderma spp. namely, T. asperellum, T. citrinoviride, T. ganodermatiderum, T. guizhouense, T. hamatum, T. harzianum, T. koningiopsis, T. paratroviride, and T. virens, through morphological characteristics and phylogenetic analysis of concatenated sequences of translation elongation factor 1-alpha (TEF) and DNA-dependent RNA polymerase II subunit (RPB2) genes. The pathogenicity test was repeated two times, and re-isolation of the nine Trichoderma spp. from the fruiting bodies of G. sichuanense fulfilled Koch's postulates. Prochloraz manganese showed the best performance against most species. This research contributes to our understanding of green mold disease, reveals the phylogenetic relationships among Trichoderma species, and expands our knowledge of Trichoderma species diversity associated with green mold disease in G. sichuanense.

19.
Materials (Basel) ; 16(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959656

RESUMO

This study investigates the microstructures and deformation mechanism of hetero-structured pure Ti under different high strain rates (500 s-1, 1000 s-1, 2000 s-1). It has been observed that, in samples subjected to deformation, the changes in texture are minimal and the rise in temperature is relatively low. Therefore, the influence of these two factors on the deformation mechanism can be disregarded. As the strain rate increases, the dominance of dislocation slip decreases while deformation twinning becomes more prominent. Notably, at a strain rate of 2000 s-1, nanoscale twin lamellae are activated within the grain with a size of 500 nm, which is a rarely observed phenomenon in pure Ti. Additionally, martensitic phase transformation has also been identified. In order to establish a correlation between the stress required for twinning and the grain size, a modified Hall-Petch model is proposed, with the obtained value of Ktwin serving as an effective metric for this relationship. These findings greatly enhance our understanding of the mechanical responses of Ti and broaden the potential applications of Ti in dynamic deformation scenarios.

20.
Chemosphere ; 345: 140491, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863207

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) in aquatic environments are threatening ecosystems and human health. In this work, an effective and environmentally friendly catalyst based on biochar and molecular imprinting technology (MIT) was developed for the targeted degradation of PAHs by activating peroxymonosulfate. The results show that the adsorption amount of naphthalene (NAP) by molecularly imprinted biochar (MIP@BC) can reach 82% of the equilibrium adsorption capacity within 5 min, and it had well targeted adsorption for NAP in the solution mixture of NAP, QL and SMX. According to the comparison between the removal rates of NAP and QL by MIP@BC/PMS or BC/PMS system in respective pure solutions or mixed solutions, the MIP@BC/PMS system can better resist the interference of competing pollutants (i.e., QL) compared to the BC/PMS system; that is, MIP@BC had a good ability to selectively degrade NAP. Besides, the removal rate of NAP by MIP@BC/PMS gradually decreased as pH increased. The addition of Cl- greatly promoted the targeted removal of NAP in the MIP@BC/PMS system, while HCO3- and CO32- both had an inhibitory effect. Furthermore, SO4•-, O2•- and 1O2 produced by BC activating PMS dominated the NAP degradation, and it was inferred that the vacated imprinted cavities after NAP degradation can continue to selectively adsorb NAP and this could facilitate the reusability of the material. This study can promote the research on the targeted degradation of PAHs through the synergism of biochar/PMS advanced oxidation processes and MIT.


Assuntos
Ecossistema , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Carvão Vegetal/química , Naftalenos , Peróxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...