RESUMO
CoFe-based catalysts are efficient electrocatalysts for the oxygen evolution reaction (OER) in alkaline media. Here, we present a simple one-pot hydrothermal method for synthesizing a series of CoFe glycerates with controllable surface morphologies and investigate their potential as highly efficient catalysts for the OER in alkaline media. These CoFe glycerates exhibit a unique yolk-shell microsphere structure assembled from ultrathin nanosheets. The adjustment of the surface nanosheet size is achieved by varying the CoFe ratio, ensuring a more efficient electrocatalytic system for the OER process. Due to the abundant active sites provided by the yolk-shell structure and interleaved ultrathin nanosheets, Co3Fe1 glycerate (Co3Fe1 gly) demonstrates a low overpotential (283 mV) and a small Tafel slope (44.61 mV dec-1) at 10 mA cm-2. Additionally, Co3Fe1 gly exhibits excellent durability in alkaline electrolytes. Moreover, a series of characterizations demonstrate that the active sites of Co3Fe1 gly are the high-valence Co species generated during the OER process. This study opens a promising avenue for utilizing efficient and low-cost electrocatalysts to enhance OER performance.
RESUMO
Hydrogels composed of polysaccharides and silver nanoparticles (AgNPs) are widely recognized for their application in wound dressings, particularly for healing wounds prone to infection. Traditional methods for preparing AgNP-immersed hydrogels are often complex, costly, and may lead to sustained cytotoxicity. To address these challenges, we developed a biocompatible, one-step green reduction strategy to generate AgNPs within hydrogels using a triple-helix ß-glucan (PCPA) derived from Poria cocos, a renowned Chinese traditional herb. PCPA serves as a reducing agent, converting silver ions into AgNPs while its triple-helix conformation prevents AgNP aggregation. The resulting hydrogel (PAg-G) is injectable and contains uniformly distributed AgNPs. PAg-G exhibits broad-spectrum antimicrobial activity and enhanced bioactivity. The in vivo studies on S.aureus-infected SD rats demonstrated that PAg-G accelerates wound healing within 12â¯days by down-regulating inflammatory factors such as IL-6 and TNF-α, and up-regulating VEGF and CD31 expression, promoting neovascularization in wound tissues. This innovative one-step construction of AgNP-immersed hydrogels offers a promising approach for the development of antimicrobial hydrogels, especially for treating bacterial-infected wounds.
RESUMO
Women with germline BRCA1 mutations face an increased risk of developing breast and ovarian cancers. BARD1 (BRCA1 associated RING domain 1) is an essential heterodimeric partner of BRCA1, and mutations in BARD1 are also associated with these cancers. While BARD1 mutations are recognized for their cancer susceptibility, the exact roles of numerous BARD1 missense mutations remain unclear. In this study, we conducted functional assays to assess the homology-directed DNA repair (HDR) activity of all BARD1 missense substitutions identified in 55 breast and ovarian cancer samples, using the real-world data from the COSMIC and cBioPortal databases. Seven BARD1 variants (V85M, P187A, G491R, R565C, P669L, T719R, and Q730L) were confirmed to impair DNA damage repair. Furthermore, cells harboring these BARD1 variants exhibited increased sensitivity to the chemotherapeutic drugs, cisplatin, and olaparib, compared to cells expressing wild-type BARD1. These findings collectively suggest that these seven missense BARD1 variants are likely pathogenic and may respond well to cisplatin-olaparib combination therapy. This study not only enhances our understanding of BARD1's role in DNA damage repair but also offers valuable insights into predicting therapy responses in patients with specific BARD1 missense mutations.
RESUMO
BACKGROUND: The primary objective of this study was to elucidate the relationship between the platelet/high-density lipoprotein cholesterol ratio (PHR) and the risk of depression in adults in the US. METHODS: We conducted a cross-sectional study using data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2016. Depression was assessed using the PHQ-9 questionnaire. Weighted multivariable logistic regression models and restricted cubic spline (RCS) models were used to study the relationship between PHR and the risk of depression. Subgroup and interaction analyses were performed to further understand these associations. RESULTS: A total of 21,454 participants were included in this study. After full adjustment, PHR was significantly positively correlated with depression (OR = 1.33, 95%CI: 1.03-1.73). When PHR was converted into a categorical variable based on quartiles (Q1-Q4), the highest quartile of PHR was associated with an increased risk of depression compared to the lowest reference group (OR = 1.22, 95%CI: 1.01-1.48). There was a linear dose-response relationship between PHR and the risk of depression (P-non-linear = 0.8038). The association remained significant in several subgroup analyses. However, the interaction test showed that none of the stratified variables were significant (all P for interaction >0.05). LIMITATION: Using self-assessment scales and inability to assess causality. CONCLUSION: This population-based cross-sectional study elucidated that PHR is significantly associated with an increased prevalence of depression in adults in the US.
RESUMO
Celastrol (Cel) is a monomer from a famous traditional Chinese medicine named Tripterygium wilfordii Hook. f. Cel has shown great potential in treating intrahepatic cholangiocarcinoma (ICC) but still faces problems, including poor water solubility, high toxicity, and lack of targeting ability. Thus, the present work constructed a drug-delivery system using black fungus polysaccharide self-assembled -nanotubes (BFP). Cel-loaded nanotubes (BFP-Cel) were confirmed to have a high loading content of Cel (38 %), liver targeting, and enzyme-controlled release abilities. Moreover, BFP carriers could significantly increase the uptake efficiency of Cel by tumor cells. In vivo experiments showed that BFP-Cel could effectively inhibit tumor growth and reduce the physiological toxicity of Cel. Furthermore, BFP, as a carrier, could regulate the immune microenvironment in the liver through the activation of macrophages and play an immunomodulatory role. In summary, the BFP nanotube carrier could achieve detoxification and efficacy enhancement of Cel in treating ICC by increasing the targetability, controlled release ability, cell-uptake effect, and regulation of the immune microenvironment.
RESUMO
Ignition electrodes have an immense impact on the accurate measurement of the flame propagation spherical radius. In this study, a flame-radius calculation method is designed. The method is able to eliminate effects due to the ignition electrodes. The adaptability and optimization effects of the proposed method are analyzed. The results show that the ratio of the angle is affected by the ignition electrodes under the Han II method. There are three obvious divisions include a high-value area, a sharp-variation area, and a mild-variation area. The ratio of the angle affected by the ignition electrodes is only applicable to the mild-variation region when the flame presents respective convex and concave distributions. For these distributions, the increment rate of the mean radius is 0.4-0.85% and 0.42-3.19%. The reduced rate of the standard deviation of the radius extraction value is 11.91-22.1% and 5.13-17.99%, and the reduced rate of the radius extraction value range is 20.32-39.51% and 0.32-8.09%.
RESUMO
Metal-organic framework materials are ideal materials characterized by open frameworks, adjustable components, and high catalytic activity. They are extensively utilized for catalysis. Due to decomposition and structural collapse under high temperatures and an oxygen-rich environment, the potential of thermal catalysis is greatly limited. In this research, Co-rich hollow spheres (Co-HSs) with a gradient composition are designed and synthesized to investigate their thermal catalytic properties in the ammonium perchlorateï¼APï¼system. The results demonstrate that Co-HSs@AP exhibits good thermal catalytic activity and a high-temperature decomposition of 292.5 °C, which is 121.6 °C lower than pure AP. The hierarchical structure confers structural stability during the thermal decomposition process. Thermogravimetry-infrared indicates that the inclusion of Co-HSs successfully boosts the level of reactive oxygen species and achieves thorough oxidation of NH3. Based on the above phenomenon, macro dynamics calculations are carried out. The results show that Co-HSs can promote the circulation of lattice oxygen and reactive oxygen species and the multidimensional diffusion of NH3 in an oxygen-rich environment. This material has significant potential for application in the fields of thermal catalysis and ammonia oxidation.
RESUMO
Due to the poor bioavailability and high joint clearance of drugs, sustained delivery of therapeutic agents has proven difficult in the treatment of osteoarthritis (OA). Intra-articular (IA) drug delivery strategy is an attractive option for enhancing OA patients' prognosis, for which various polymer materials have been used as drug carriers due to their attractive delivery properties, to slow or even reverse the progress of OA by prolonging the duration of therapeutic agent residence in the joint. This article focuses on the recent developments in natural and synthetic polymer-based microsphere drug delivery systems for treating knee osteoarthritis. It evaluates the translational potential of some novel formulations for clinical application.
RESUMO
Aqueous ammonium-ion energy storage systems have recently gained continuous attention owing to the advantages of sustainability and environmental-friendliness in the grid-scale application. However, ammonium-ion supercapacitors are still in their infancy, and it is of great challenge in developing suitable materials for application in wearable energy storage devices. Herein, we develop a vanadium oxide hydration (V2O5·nH2O)/reduced graphene oxide (rGO) composite film (denoted as VGF) as a free-standing paper-like electrode for ammonium-ion storage, where V2O5·nH2O shows an expanded interlayer spacing and is sandwiched by rGO through chemical bonds. As a result, the designed VGF exhibits a capacitance of 600F·g-1 at 0.2 A·g-1 and good cyclability of over 10,000 cycles with a retention of 93 % using PVA/NH4Cl gel electrolyte. Meanwhile, the ammonium-ion storage mechanism in VGF electrode is further verified to be dominated by the intercalation pseudocapacitance and electric double-layer capacitance. Furthermore, the quasi-solid-state symmetric supercapacitor (SSC) has been also assembled to assess the feasibility of practical applications in wearable devices. As expected, the SSC possesses an areal capacitance of 241 mF·cm-2 at 0.1 mA·cm-2 (0.82 Wh·m-2 at 0.09 W·m-2) and an excellent cyclability of 20,000 cycles with a retention of 92 %, which is comparable to that achieved in the vanadium oxides powder-made electrodes and the SSC made of. Together with the excellent flexibility and feasibility of parallel/series combination, the VGF SSC devices shows great possibility for the applications in wearable devices, which further proves the great potential of this designed VGF free-standing electrode for ammonium-ion storage.
RESUMO
METTL3-mediated RNA N6-methyladenosine (m6A) is the most prevalent modification that participates in tumor initiation and progression via governing the expression of their target genes in cancers. However, its role in tumor cell metabolism remains poorly characterized. In this study, m6A microarray and quantitative proteomics were employed to explore the potential effect and mechanism of METTL3 on the metabolism in GC cells. Our results showed that METTL3 induced significant alterations in the protein and m6A modification profile in GC cells. Gene Ontology (GO) enrichment indicated that down-regulated proteins were significantly enriched in intracellular mitochondrial oxidative phosphorylation (OXPHOS). Moreover, the protein-protein Interaction (PPI) network analysis found that these differentially expressed proteins were significantly associated with OXPHOS. A prognostic model was subsequently constructed based on the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, and the high-risk group exhibited a worse prognosis in GC patients. Meanwhile, Gene Set Enrichment Analysis (GSEA) demonstrated significant enrichment in the energy metabolism signaling pathway. Then, combined with the results of the m6A microarray analysis, the intersection molecules of DEPs and differential methylation genes (DMGs) were significantly correlated with the molecules of OXPHOS. Besides, there were significant differences in prognosis and GSEA enrichment between the two clusters of GC patients classified according to the consensus clustering algorithm. Finally, highly expressed and highly methylated molecules regulated by METTL3 were analyzed and three (AVEN, DAZAP2, DNAJB1) genes were identified to be significantly associated with poor prognosis in GC patients. These results signified that METTL3-regulated DEPs in GC cells were significantly associated with OXPHOS. After combined with m6A microarray analysis, the results suggested that these proteins might be implicated in cell energy metabolism through m6A modifications thus influencing the prognosis of GC patients. Overall, our study revealed that METTL3 is involved in cell metabolism through an m6A-dependent mechanism in GC cells, and indicated a potential biomarker for prognostic prediction in GC.
RESUMO
Layered vanadium-based materials are considered to be great potential electrode materials for aqueous Zn-ion batteries (AZIBs). The improvement of the electrochemical properties of vanadium-based materials is a hot research topic but still a challenge. Herein, a composite of Zn-ion pre-intercalated V2O5·nH2O combined with reduced graphene oxide (ZnVOH/rGO) is synthesized by a facile hydrothermal method and it shows improved Zn-ion storage. ZnVOH/rGO delivers a capacity of 325 mAh·g-1 at 0.1 A·g-1, and this value can still reach 210 mAh·g-1 after 100 cycles. Additionally, it exhibits 196 mAh·g-1 and keeps 161 mAh·g-1 after 1200 cycles at 4 A·g-1. The achieved performances are much higher than that of ZnVOH and VOH. All results reveal that Zn2+ as "pillars" expands the interlayer distance of VOH and facilitates the fast kinetics, and rGO improves the electron flow. They both stabilize the structure and enhance efficient Zn2+ migration. All findings demonstrate ZnVOH/rGO's potential as a perspective cathode material for AZIBs.
RESUMO
Wernekink commissure syndrome (WCS) is very rare. Four patients with WCS, admitted to our hospital from April to May 2018, were chosen for this study, and their clinical manifestations, imaging features, and etiology were retrospectively analyzed based on the literatures. All patients with WCS manifested as bilateral cerebellar ataxia such as symmetrical limb and trunk ataxia, but the degree of ataxia was asymmetrical distribution based on the anatomy. Dysarthria was the main and constant clinical manifestation of the syndrome. Ophthalmoplegia had great variability, and WCS with oculomotor nerve palsy may be considered as atypical WCS. The incidence of olivary degeneration and palatine myoclonus is relatively low, which may be related to the difference in the reported time intervals of cases. Changes in consciousness and emotion may be the characteristic of neglected WCS, which should be paid more attention. Cerebral infarction is the main etiology of WCS. We reported that cerebral infarction and WCS was the first symptom in a patient with systemic lupus erythematosus (SLE). We should pay more attention to special etiology in diagnosis and treatment of WCS.
Assuntos
Ataxia Cerebelar , Lúpus Eritematoso Sistêmico , Infarto Cerebral , Humanos , Estudos Retrospectivos , SíndromeRESUMO
Urchinlike W-V-O microspheres have been successfully synthesized for the first time by a one-pot hydrothermal approach. The as-synthesized W-V-O material was characterized by several techniques such as XRD, SEM, TEM, FTIR, EDS, BET, and Raman spectroscopy. The characterization results have revealed that the W-V-O microspheres consist of numerous one-dimensional nanobelts radially grown from the center. The typical nanobelts display rectangular cross sections with lengths of several micrometers, widths of about 50 nm, and thicknesses of approximately 10-20 nm. Vanadium oxides are dispersed highly either on the external surface or inside the channel surface of the hexagonal WO3 structure. In addition, the as-obtained urchin-like W-V-O material was explored as a catalyst for the ammoxidation of 2,4- and 2,6-dichlorotoluene to the corresponding nitriles. The catalytic results have indicated that the W-V-O nanostructures show excellent performance with yields of 2,4- and 2,6-dichlorobenzonitrile respectively reaching up to 77.3 and 75.1%, which are the highest among the previously reported catalysts with two components. The formation process of the urchinlike W-V-O microspheres was simply investigated.
RESUMO
OBJECTIVE: To conduct the cloning identification and characterization of the sequence of human IL-17A promoter so as to analyze the regulatory mechanism of the gene expression of IL-17. METHODS: First of all, the potential promoter region of IL-17A was found by means of the bioinformatics methods. Then, it was cloned into the reporter vector with PCR technique. Finally, the activity of the test promoter was determined by dual luciferase reporter system. RESULTS: Two transcriptional start points of the upper region, 600 bp and 1000 bp, of IL-17A were obtained by PCR clone and proved to have certain activities by dual luciferase reporter system. Also, they could be activated by IL-17A activator STAT3, which could start the expression of the reported gene. CONCLUSIONS: Clone established the regulatory region of human IL-17A promoter, which provided bases to the subsequent function research.
RESUMO
OBJECTIVE: To study the effect of fatty acids composition on swarming mobility in Pseudomonas aeruginosa. METHODS: We constructed a fabF-knockout mutant of PAO1 (YFF-1) by double exchange principle, overexpressed FabF in YFF-1 mutant to recover the mobility, and compared the swarming ability of wild type, YFF-1 mutant and mutant with plasmid pUCP18Gm-fabF. The change of fatty acids composition was analyzed using gas chromatography to explain the difference of swarming ability. RESULTS: Swarming ability disappeared in YFF-1 mutant and was recovered in YFF-1 with plasmid pUCP18Gm-fabF. Gas chromatography analysis revealed that fatty acids composition changed in YFF-1. The cis-vaccinate acid (C18:1delta11) content decreased from 33.6% to 8.9%, and the ratio of unsaturated fatty acids to saturated fatty acids (UFA: SFA) was deduced from 0.96 to 0.74. The recovery of cis-vaccinate acid content was 20.9% and UFA:SFA 1.09 after expression of fabF. CONCLUSION: Expression level of FabF played an important role in regulating swarming ability of PAO1. The decrease of cis-vaccinate acid content and unsaturation degree of fatty acids, especially the sharp decrease of cis-vaccinate acid, may be vital causes of swarming ability disappearance in YFF-1.
Assuntos
Ácidos Oleicos/metabolismo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Deleção de Genes , Ácidos Oleicos/química , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genéticaRESUMO
OBJECTIVE: To investigate the role of histone acetylation in regulating influenza virus replicative intermediate double-stranded RNA (dsRNA)-induced interleukin-6 (IL-6) expression in A549 cells. METHODS: A549 cells were treated with influenza virus replicative intermediate dsRNA, histone deacetylase (HDAC) inhibitor trichostatin A (TSA), or HADC small interfering RNA (siRNA). The changes in the cellular IL-6 promoter activities were detected by dual-luciferase assay, and IL-6 mRNA and protein expressions in the cells were determined using real-time RT-PCR and ELISA, respectively. RESULTS: Influenza virus replicative intermediate dsRNA obviously up-regulated IL-6 expression in the cells. HDAC inhibitor TSA significantly enhanced the activity of IL-6 promoter and increased IL-6 mRNA expression in A549 cells, and HDAC3 may play an important role in this process. HDAC inhibitor TSA and DNMT inhibitor DAC showed no synergic effect in regulating IL-6 expression. CONCLUSIONS: Influenza virus replicative intermediate dsRNA-induced IL-6 expression in A549 cells is regulated by histone acetylation.
Assuntos
Histonas/metabolismo , Interleucina-6/metabolismo , Orthomyxoviridae/metabolismo , RNA de Cadeia Dupla , Acetilação , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Humanos , Orthomyxoviridae/genética , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA ViralRESUMO
DNA in dried blood spots of 39 vivax malaria patients (2009-2010) from Anhui (Bengbu urban district and counties of Wuhe, Huaiyuan, Mengcheng and Lixin) was extracted. The Plasmodium vivax LDH (PvLDH) gene was amplified, cloned and sequenced. The sequences were subjected to NCBI Blast program. The results showed that the targeted DNA fragment size was 951 bp without difference among the 39 samples (accession No. GU078391), and was more than 99% homologous to the PvLDH sequences in other strains from GenBank. There was only one different amino acid in the protein sequences between the isolates from Anhui and EJEU60134 or MIA061251 strains.