Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38606967

RESUMO

Coal-derived carbon nanomaterials possess numerous superior features compared to other classic carbon, such as readily accessible surfaces, tunable pore structure, and facile and precise surface functionalization. Therefore, the controllable preparation of coal-derived carbon nanomaterials is anticipated to be of great significance for the performance improvement and commercialization process of carbon-based perovskite solar cells (C-PSCs). In this study, we successfully synthesized highly stable and commercially valuable graphene oxide (GO) and reduced graphene oxide (rGO) utilizing coal. Compared to traditional methods and commercial graphene, the chemical oxidation and pyrolysis process used in this study is mild and simple, offering the advantages of controlled composition and the absence of other impurities. GO or rGO was incorporated into the top of the SnO2 electron transport layer (ETL) of C-PSCs. Under optimized conditions and ultraviolet-ozone (UVO) irradiation, the ultimate power conversion efficiency (PCE) increased from the unmodified 12.4 to 14.04% (based on rGO) and 15.18% (based on GO), representing improvements of 22 and 31%, respectively. The improved photovoltaic performance is mainly owing to enhanced charge transport capabilities, denser interfacial contacts, improved carrier separation properties, increased conductivity, and abundance of hydrophilic functional groups in GO, which can form more stable hydrogen bonds with SnO2. After being stored at room temperature and ambient humidity for 30 days, the modified, unpacked devices retained 87% of the highest power conversion efficiency (PCE). This study introduces a practical and manageable method to enhance the performance of C-PSCs by using functional carbon nanomaterials derived from coal.

2.
RSC Adv ; 13(45): 31518-31527, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37901260

RESUMO

Bio-based pentamethylene diisocyanate (PDI) is a new type of sustainable isocyanate, which has important applications in coatings, foams, and adhesives. Technical-economic analysis of the PDI distillation process can promote the industrialization of PDI. The thermal analysis of PDI facilitates the smooth running of the simulation process. A new PDI heat capacity prediction method was established. The distillation processes of a crude PDI solution by conventional distillation and double-effect distillation were studied. Countercurrent double-effect distillation showed the best energy-saving effects in all double-effect distillation. However, combined with total annual charge (TAC), parallel double-effect distillation was the optimal method for PDI purification. Parallel double-effect distillation can significantly reduce the TAC of production PDI, which is 33.39% lower than that of the conventional distillation. The study demonstrates a clear economic incentive for reducing the cost of PDI purification by parallel double-effect distillation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...