Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1373624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974975

RESUMO

Introduction: To address issues related to shallow soil tillage, low soil nutrient content, and single tillage method in maize production in the Western Inner Mongolia Region, this study implemented various tillage and straw return techniques, including strip cultivation, subsoiling, deep tillage, no-tillage, straw incorporation with strip cultivation, straw incorporation with subsoiling, straw incorporation with deep tillage, and straw incorporation with no tillage, while using conventional shallow spinning by farmers as the control. Methods: We employed Xianyu 696 (XY696) and Ximeng 6 (XM6) as experimental materials to assess maize 100-grains weight, grain filling rate parameters, and grain nutrient quality. This investigation aimed to elucidate how tillage and straw return influence the accumulation of grain material in different maize varieties. Results and discussion: The results indicated that proper implementation of tillage and straw return had a significant impact on the 100-grains weight of both varieties. In comparison to CK (farmer's rotary rotation), the most notable rise in 100-grains weight was observed under the DPR treatment (straw incorporation with deep tillage), with a maximum increase of 4.84% for XY696 and 6.28% for XM6. The proper implementation of tillage and straw return in the field resulted in discernible differences in the stages of improving the grain filling rates of different maize varieties. Specifically, XY696 showed a predominant increase in the filling rate during the early stage (V1), while XM6 exhibited an increase in the filling rates during the middle and late stages (V2 and V3). In comparison to CK, V1 increased by 1.54% to 27.56% in XY696, and V2 and V3 increased by 0.41% to 10.42% in XM6 under various tillage and straw return practices. The proper implementation of tillage and straw return had a significant impact on the nutritional quality of the grains in each variety. In comparison to CK, the DPR treatment resulted in the most pronounced decrease in the soluble sugar content of grains by 25.43% and the greatest increase in the crude fat content of grains by 9.67%. Conclusion: Ultimately, the proper implementation of soil tillage and straw return facilitated an increase in grain crude fat content and significantly boosted grain weight by improving the grouting rate parameters at all stages for various maize varieties. Additionally, the utilization of DPR treatment proved to be more effective. Overall, DPR is the most promising strategy to improve maize yield and the nutritional quality of grain in the long term in the Western Inner Mongolia Region.

2.
Food Chem ; 454: 139715, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795619

RESUMO

Starches-rich and protein-rich cereal samples commonly need tedious sample preparation steps before instrumental analysis. This study developed a miniaturized centrifugal integrated cold-induced phase separation (CIPS) method for convenient sample preparation. A small-sized centrifuge tube (2 mL) and a low-temperature centrifuge, both of which are easily accessible, make up the basic components of the system. Unlike conventional sample preparation methods that need a step-by-step extraction, enrichment, purification, and centrifugation, this centrifugal integrated CIPS method can be performed by a one-step combination protocol under a low-temperature centrifuge. As a proof-of-concept study, satisfactory recoveries and enrichment factors were demonstrated for the extraction of fumonisins and ochratoxins from cereals. A sensitive and selective quantification method was yielded by combining LC-HRMS using tSIM acquisition mode, with good linearity (R2 > 0.998), accuracy (82.9-106.5%), and precision (<13.4%). This strategy is convenient, low-cost, repeatable, and easy to semi-automate, further expanding the extraction potential for other acidic mycotoxins.


Assuntos
Grão Comestível , Contaminação de Alimentos , Fumonisinas , Grão Comestível/química , Contaminação de Alimentos/análise , Fumonisinas/análise , Fumonisinas/isolamento & purificação , Centrifugação , Estudo de Prova de Conceito , Micotoxinas/isolamento & purificação , Micotoxinas/análise , Micotoxinas/química , Cromatografia Líquida de Alta Pressão , Separação de Fases
3.
iScience ; 27(2): 109039, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38352230

RESUMO

Fibroblast growth factor 9 (FGF9) is a member of the fibroblast growth factor family, which is widely expressed in the central nervous system (CNS). It has been reported that deletion of FGF9 leads to defects in cerebellum development, including Purkinje cell defect. However, it is not clear how FGF9 regulating cerebellar development remains to be determined. Our results showed that in addition to disrupt Bergmann fiber scaffold formation and granule neuron migration, deletion of neuronal FGF9 led to ataxia defects. It affected development and function of Purkinje cells, and also changed the action potential threshold and excitation frequency. Mechanistically, depletion of FGF9 significantly changed neurotransmitter contents in Purkinje cells and led to preferential increase in inflammation, even downregulation in ERK signaling. Together, the data demonstrate that neuronal FGF9 is required for the development and function of Purkinje cells in the cerebellum. Insufficient FGF9 during cerebellum development will cause ataxia defects.

4.
BMC Plant Biol ; 24(1): 34, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185653

RESUMO

BACKGROUND: Drought stress can substantially restrict maize growth and productivity, and global warming and an increasing frequency of extreme weather events are likely to result in more yield losses in the future. Therefore, unraveling the molecular mechanism underlying the response to drought stress is essential for breeding drought-resilient crops. RESULTS: In this study, we subjected the 3-leaf-period plants of two maize inbred lines, a drought-tolerant line (si287) and a drought-sensitive line (X178), to drought stress for seven days while growing in a chamber. Subsequently, we measured physiological traits and analyzed transcriptomic and metabolic profiles of two inbred lines. Our KEGG analysis of genes and metabolites revealed significant differences in pathways related to glycolysis/gluconeogenesis, flavonoid biosynthesis, starch and sucrose metabolism, and biosynthesis of amino acids. Additionally, our joint analysis identified proline, tryptophan and phenylalanine are crucial amino acids for maize response to drought stress. Furthermore, we concentrated on tryptophan (Trp), which was found to enhance tolerance via IAA-ABA signaling, as well as SA and nicotinamide adenine dinucleotide (NAD) consequent reactive oxygen species (ROS) scavenging. We identified three hub genes in tryptophan biosynthesis, indole-3-acetaldehyde oxidase (ZmAO1, 542,228), catalase 1 (ZmCAT1, 542,369), and flavin-containing monooxygenase 6 (ZmYUC6, 103,629,142), High expression of these genes plays a significant role in regulating drought tolerance. Two metabolites related to tryptophan biosynthesis, quinolinic acid, and kynurenine improved maize tolerance to drought stress by scavenging reactive oxygen species. CONCLUSIONS: This study illuminates the mechanisms underlying the response of maize seedlings to drought stress. Especially, it identifies novel candidate genes and metabolites, enriching our understanding of the role of tryptophan in drought stress. The identification of distinct resistance mechanisms in maize inbred lines will facilitate the exploration of maize germplasm and the breeding of drought-resilient hybrids.


Assuntos
Plântula , Zea mays , Plântula/genética , Zea mays/genética , Secas , Triptofano , Espécies Reativas de Oxigênio , Melhoramento Vegetal , Perfilação da Expressão Gênica , Aminoácidos
5.
Sci Rep ; 13(1): 18800, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914756

RESUMO

Due to the ongoing global warming, maize production worldwide is expected to be heavily inflicted by droughts. The grain yield of maize hybrids is an important factor in evaluating their suitability and stability. In this study, we utilized the AMMI model and GGE biplot to analyze grain yield of 20 hybrids from the three tested environments in Inner Mongolia in 2018 and 2019, aiming at selecting drought-tolerant maize hybrids. AMMI variance analysis revealed highly significant difference on main effects for genotype, environment, and their interaction. Furthermore, G11 (DK159) and G15 (JKY3308) exhibited favorable productivity and stability across all three test environments. Moreover, G10 (LH1) emerged as the most stable hybrid according to the AMMI analysis and the GGE biplot. Bayannur demonstrated the highest identification ability among the three tested sites. Our study provides accurate identification for drought-resilient maize hybrids in different rain-fed regions. These findings can contribute to the selection of appropriate hybrids that exhibit productivity, stability, and adaptability in drought-prone conditions.


Assuntos
Ammi , Zea mays , Zea mays/genética , Secas , Grão Comestível/genética , China
6.
Appl Microbiol Biotechnol ; 107(16): 5241-5255, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392246

RESUMO

While the in situ return of corn straw can improve soil fertility and farmland ecology, additional bacterial agents are required in low-temperature areas of northern China to accelerate straw degradation. Moisture is an important factor affecting microbial activity; however, owing to a lack of bacterial agents adapted to low-temperature complex soil environments, the effects of soil moisture on the interaction between exogenous bacterial agents and indigenous soil microorganisms remain unclear. To this end, we explored the effect of the compound bacterial agent CFF constructed using Pseudomonas putida and Acinetobacter lwoffii, developed to degrade corn straw in low-temperature soils (15 °C), on indigenous bacterial and fungal communities under dry (10% moisture content), slightly wet (20%), and wet (30%) soil-moisture conditions. The results showed that CFF application significantly affected the α-diversity of bacterial communities and changed both bacterial and fungal community structures, enhancing the correlation between microbial communities and soil-moisture content. CFF application also changed the network structure and the species of key microbial taxa, promoting more linkages among microbial genera. Notably, with an increase in soil moisture, CFF enhanced the rate of corn straw degradation by inducing positive interactions between bacterial and fungal genera and enriching straw degradation-related microbial taxa. Overall, our study demonstrates the alteration of indigenous microbial communities using bacterial agents (CFF) to overcome the limitations of indigenous microorganisms for in situ straw-return agriculture in low-temperature areas. KEY POINTS: • Low-temperature and variable moisture conditions (10-30%) were compared • Soil microbial network structure and linkages between genera were altered • CFF improves straw degradation via positive interactions between soil microbes.


Assuntos
Microbiologia do Solo , Zea mays , Zea mays/microbiologia , Temperatura , Agricultura/métodos , Solo/química , Bactérias/metabolismo
7.
Sci Rep ; 12(1): 20163, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424390

RESUMO

To systematically explore and analyze the microbial composition and function of microbial consortium M44 with straw degradation in the process of subculture at low temperature. In this study, straw degradation characteristics of samples in different culture stages were determined. MiSeq high-throughput sequencing technology was used to analyze the evolution of community structure and its relationship with degradation characteristics of microbial consortium in different culture periods, and the PICRUSt function prediction analysis was performed. The results showed that straw degradation rate, endoglucanase activity, and filter paper enzyme activity of M44 generally decreased with increasing culture algebra. The activities of xylanase, laccase, and lignin peroxidase, as well as VFA content, showing a single-peak curve change with first an increase and then decrease. In the process of subculture, Proteobacteria, Bacteroidetes, and Firmicutes were dominant in different culture stages. Pseudomonas, Flavobacterium, Devosia, Brevundimonas, Trichococcus, Acinetobacter, Dysgonomonas, and Rhizobium were functional bacteria in different culture stages. It was found by PICRUSt function prediction that the functions were concentrated in amino acid transport and metabolism, carbohydrate transship and metabolism related genes, which may contain a large number of fibers and lignin degrading enzyme genes. In this study, the microbial community succession and the gene function in different culture periods were clarified and provide a theoretical basis for screening and rational utilization of microbial consortia.


Assuntos
Consórcios Microbianos , Microbiota , Consórcios Microbianos/genética , Temperatura , Bactérias/genética , Bactérias/metabolismo , Microbiota/genética , Lignina/metabolismo
8.
PLoS One ; 17(7): e0270162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802565

RESUMO

This study explored changes in the microbial community structure during straw degradation by a microbial decomposer, M44. The microbial community succession at different degradation periods was analyzed using MiSeq high-throughput sequencing. The results showed that 14 days after inoculation, the filter paper enzyme and endoglucanase activities increased to 2.55 U·mL-1 and 2.34 U·mL-1. The xylanase, laccase, and lignin peroxidase activities rose to 9.86 U·mL-1, 132.16 U·L-1, and 85.43 U·L-1 after 28 d, which was consistent with changes in the straw degradation rate. The degradation rates of straw, lignin, cellulose, and hemicellulose were 31.43%, 13.67%, 25.04%, and 21.69%, respectively, after 28 d of fermentation at 15°C. Proteobacteria, Firmicutes, and Bacteroidetes were the main bacterial species in samples at different degradation stages. The dominant genera included Pseudomonas, Delftia, and Paenibacillus during the initial stage (1 d, 7 d) and the mid-term stage (14 d). The key functional microbes during the late stage (21 d, 28 d) were Rhizobium, Chryseobacterium, Sphingobacterium, Brevundimonas, and Devosia. Changes in the bacterial consortium structure and straw degradation characteristics during different degradation periods were clarified to provide a theoretical basis for the rational utilization of microbial decomposer M44.


Assuntos
Celulose , Lignina , Bactérias , Celulose/metabolismo , Fermentação , Lignina/metabolismo , Consórcios Microbianos , Temperatura
9.
World J Microbiol Biotechnol ; 38(5): 78, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35325312

RESUMO

A lignocellulolytic microbial consortium holds promise for the in situ biodegradation of crop straw and the comprehensive and effective utilization of agricultural waste. In this study, we applied metagenomics technology to comprehensively explore the metabolic functional potential and taxonomic diversity of the microbial consortia CS (cultured on corn stover) and FP (cultured on filter paper). Analyses of the data on metagenomics taxonomic affiliations revealed considerable differences in the taxonomic composition and carbohydrate-active enzymes profile of the microbial consortia CS and FP. Pseudomonas, Dysgonomonas and Sphingobacterium in CS and Cellvibrio and Pseudomonas in FP had a much wider distribution of lignocellulose degradative ability. The genes for more lignocellulose degradative enzymes were detected when the relatively simple substrate filter paper was used as the carbon source. Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses revealed considerable levels of similarity, and carbohydrate metabolic and amino acid metabolic pathways were the most enriched in CS and FP, respectively. The mechanism used by the two microbial consortia to degrade lignocellulose was similar, but the annotation of quantity of genes indicated that they are diverse and vary greatly. These data underlie the interactions between microorganisms and the synergism of enzymes during the degradative process of lignocellulose under different substrates and suggest the development of potential microbial resources.


Assuntos
Consórcios Microbianos , Sphingobacterium , Bactérias/metabolismo , Carbono/metabolismo , Metagenômica , Consórcios Microbianos/genética
10.
Sci Rep ; 12(1): 799, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039526

RESUMO

Maize (Zea mays L.) is considered one of the most important grains in the world. Straw return has the effect of reducing soil bulk density and increasing soil porosity. Straw returning and potassium fertilizer can supplement soil potassium content. The improvement of soil structure and the optimization of soil nutrient levels provide a good environment for high yield and high efficiency of maize. Therefore, three field experiments were carried out over a three-year period (2018-2020) to study the effects of straw returning on photosynthesis, dry matter accumulation and yield of maize 'Xianyu 335' under two different fertilization methods and four potassium application levels. The results showed that straw returning and potassium application had significant effects on the above indicators. The above indicators were significantly improved by deep tillage straw returning compared with no tillage straw returning. Increasing potassium supply can promote the effect of straw returning. The photosynthesis, dry matter accumulation and yield parameters of maize treated with straw returning and deep tillage combined with 60 kg/hm2 potassium fertilizer (SFK60) reached the highest in the three harvest seasons. The corn planting profit of SFK45 treatment is the highest, which is $1868.92 per ha. Therefore, SFK45 is an effective way to ensure stable and high yield of corn and maximize farmers' income.

11.
Sci Rep ; 11(1): 20430, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650176

RESUMO

Grain filling is the key stage for achieving high grain yield. Subsoiling tillage, as an effective conservation tillage, has been widely used in the maize planting region of China. This study was conducted to explore the effects of subsoiling on the grain filling characteristics of maize varieties of different eras. Five typical maize varieties from different eras (1970s, 1980s, 1990s, 2000s and 2010s) were used as experimental materials with two tillage modalities (rotation tillage and subsoiling tillage). The characteristic parameters (Tmax: the time when the maximum grouting rate was reached, Wmax: the grain weight at the maximum filling rate, Rmax: the maximum grouting rate, P: the active grouting stage, Gmean: the average grouting rate; A: the ultimate growth mass) and rate parameters (T1: the grain filling duration of the gradually increasing stage, V1: the average grain filling rate of the gradually increasing stage, T2: he grain filling duration of the rapidly increasing stage, V2: the average grain filling rate of the rapidly increasing stage, T3: the grain filling duration of the slowly increasing stage, V3: the average grain filling rate of the slowly increasing stage) of grain filling of two tillage modalities were analyzed and compared. The results showed that the filling parameters closely correlated with the 100-kernel weight were significantly different among varieties from different eras, and the grain filling parameters of the 2010s variety were better than those of the other varieties, the P and Tmax prolonged by 4.06-19.25%, 5.88-27.53% respectively, the Rmax and Gmean improved by 5.68-14.81%, 4.76-12.82% and the Wmax increased by 10.14-32.58%. Moreover, the 2010s variety helped the V2 and V3 increase by 6.49-13.89%, 4.55-15.00%. In compared with rotation tillage, the grain yield of maize varieties from different eras increased by 4.28-7.15% under the subsoiling condition, while the 100-kernel weight increased by 3.53-5.06%. Under the same contrast conditions, subsoiling improved the Rmax, Wmax and Gmean by 1.23-4.86%, 4.01-5.96%, 0.25-2.50% respectively, delayed the Tmax by 4.04-5.80% and extended the P by 1.19-4.03%. These differences were major reasons for the significant increases in 100-kernel dry weight under the subsoiling condition. Moreover, subsoiling enhanced the V2 and V3 by 0.70-4.29%, 0.00-2.44%. The duration of each filling stage and filling rate of maize varieties from different eras showed different responses to subsoiling. Under the subsoiling condition, the average filling rate of the 1970-2010s varieties were improved by 1.18%, 0.34%, 0.57%, 1.57% and 2.69%. In the rapidly increasing period, the grain filling rate parameters of the 2010s variety were more sensitive to subsoiling than those of the other varieties. The rapidly increasing and slowly increasing period are the key period of grain filling. Since the 2010s variety and subsoiling all improve the grain filling rate parameters of two periods, we suggest that should select the variety with higher grain filling rate in the rapidly increasing and slowly increasing period, and combine subsoiling measures to improve the grain filling characteristic parameters of maize in production, so as to achieve the purpose of increasing 100 grain weight and yield.

12.
Front Plant Sci ; 12: 644597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936131

RESUMO

Plant growth-promoting bacteria (PGPB) are components of the plant rhizosphere that promote plant growth and/or inhibit pathogen activity. To explore the cotton seedlings response to Bacillus circulans GN03 with high efficiency of plant growth promotion and disease resistance, a pot experiment was carried out, in which inoculations levels of GN03 were set at 104 and 108 cfu⋅mL-1. The results showed that GN03 inoculation remarkably enhanced growth promotion as well as disease resistance of cotton seedlings. GN03 inoculation altered the microbiota in and around the plant roots, led to a significant accumulation of growth-related hormones (indole acetic acid, gibberellic acid, and brassinosteroid) and disease resistance-related hormones (salicylic acid and jasmonic acid) in cotton seedlings, as determined with ELISA, up-regulated the expression of phytohormone synthesis-related genes (EDS1, AOC1, BES1, and GA20ox), auxin transporter gene (Aux1), and disease-resistance genes (NPR1 and PR1). Comparative genomic analyses was performed between GN03 and four similar species, with regards to phenotype, biochemical characteristics, and gene function. This study provides valuable information for applying the PGPB alternative, GN03, as a plant growth and disease-resistance promoting fertilizer.

13.
J Chromatogr A ; 1649: 462235, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34038778

RESUMO

A simple extraction procedure coupled with liquid chromatography-Q Orbitrap high resolution mass spectrometry (LC-Q Orbitrap HRMS) for the determination of 19 quinolones in animal-derived foods (pork, fish, egg and milk) has been developed. Sample preparation is based on homogeneous liquid-liquid extraction at pH > 9 using water-miscible acetonitrile with cold-induced phase separation. The procedure allowed one-step enrichment and cleanup of all the 19 quinolones with different logP properties to lower aqueous phase, which eliminated the process of preconcentration and re-dissolution for sample solution. Furthermore, an adsorption phenomenon was observed between conventional borosilicate glass injection vials and most of quinolones. In detection analysis, a scheduled variable full scan strategy was performed to improve detection performance in Q Orbitrap HRMS. Under optimal conditions, a superior limit of quantitation (0.028-0.192 µg/kg) in animal-derived foods was achieved using this proposed method. Lastly, this method was validated and applied successfully in real samples.


Assuntos
Acetonitrilas/química , Cromatografia Líquida/métodos , Resíduos de Drogas/análise , Contaminação de Alimentos/análise , Extração Líquido-Líquido/métodos , Espectrometria de Massas/métodos , Quinolonas/análise , Água/química , Animais , Cromatografia Líquida de Alta Pressão/métodos , Peixes , Concentração de Íons de Hidrogênio , Limite de Detecção , Leite/química , Carne de Porco
14.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803725

RESUMO

The proteins with lysin motif (LysM) are carbohydrate-binding protein modules that play a critical role in the host-pathogen interactions. The plant LysM proteins mostly function as pattern recognition receptors (PRRs) that sense chitin to induce the plant's immunity. In contrast, fungal LysM blocks chitin sensing or signaling to inhibit chitin-induced host immunity. In this review, we provide historical perspectives on plant and fungal LysMs to demonstrate how these proteins are involved in the regulation of plant's immune response by microbes. Plants employ LysM proteins to recognize fungal chitins that are then degraded by plant chitinases to induce immunity. In contrast, fungal pathogens recruit LysM proteins to protect their cell wall from hydrolysis by plant chitinase to prevent activation of chitin-induced immunity. Uncovering this coevolutionary arms race in which LysM plays a pivotal role in manipulating facilitates a greater understanding of the mechanisms governing plant-fungus interactions.


Assuntos
Fungos/metabolismo , Imunidade Vegetal , Proteínas/química , Proteínas/metabolismo , Motivos de Aminoácidos , Interações Hospedeiro-Patógeno , Plantas/imunologia , Plantas/microbiologia
15.
Bot Stud ; 62(1): 5, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33914180

RESUMO

Antimicrobial peptides (AMPs) are a class of short, usually positively charged polypeptides that exist in humans, animals, and plants. Considering the increasing number of drug-resistant pathogens, the antimicrobial activity of AMPs has attracted much attention. AMPs with broad-spectrum antimicrobial activity against many gram-positive bacteria, gram-negative bacteria, and fungi are an important defensive barrier against pathogens for many organisms. With continuing research, many other physiological functions of plant AMPs have been found in addition to their antimicrobial roles, such as regulating plant growth and development and treating many diseases with high efficacy. The potential applicability of plant AMPs in agricultural production, as food additives and disease treatments, has garnered much interest. This review focuses on the types of plant AMPs, their mechanisms of action, the parameters affecting the antimicrobial activities of AMPs, and their potential applications in agricultural production, the food industry, breeding industry, and medical field.

16.
Chemosphere ; 244: 125486, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31812050

RESUMO

There is a lack of research on microplastic pollution in freshwater areas. In this study, microplastic pollution in lakeshore sediments of East Dongting Lake was investigated. The abundance of microplastics ranged from 180 to 693 items/kg in the lakeshore sediment, which was moderate compared with other areas of the world. Fibers, transparent and small sized microplastics accounted for the largest proportion in terms of shape, color and size, respectively. Eight types of microplastics with different polymer compositions were identified by micro-Raman spectroscopy. The study found that the abundance of microplastics in the urban area sediment of Dongting Lake is lower than that of the rural area. The difference in environmental protection measures between urban and rural areas may be the cause of this phenomenon. The results of this study is helpful for understanding the role of human activities in microplastic pollution and provide valuable references for future research.


Assuntos
Monitoramento Ambiental , Microplásticos/análise , Poluentes Químicos da Água/análise , Conservação dos Recursos Naturais , Poluição Ambiental/análise , Sedimentos Geológicos/química , Lagos/química , Plásticos/química
17.
Food Chem ; 299: 125146, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31302427

RESUMO

Matrix effects in complex tea matrices remains a great challenge to rapid quantitative analysis of multi-residue pesticides by analysis of mass spectrometry. Herein, a mixed-mode polymer cationic exchange based dispersive solid-phase extraction (DSPE) procedure was established to eliminate matrix effects of tea for a rapid target alkaline multi-residue pesticides analysis. One-step DSPE procedure can eliminate matrix interferences from the tea extract without additional dilution or tedious cleanup operations. Liquid chromatography-high resolution mass spectrometry using pre-column dilution injection mode was used as the detection technique, while eliminating solvent effects of target analytes and improving the detection sensitivity. Based on this effective analytical method, the results of absolute matrix effects were within 0.77-1.08 for quantitation of the 68 alkaline pesticides, and superior relative matrix effects were also achieved with RSD values below 9.8%. Finally, this method was validated and applied to the alkaline pesticides analysis of the 123 tea samples.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Resíduos de Praguicidas/análise , Extração em Fase Sólida/métodos , Chá/química , Cafeína/isolamento & purificação , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Resíduos de Praguicidas/química , Polifenóis/isolamento & purificação , Reprodutibilidade dos Testes
18.
Environ Pollut ; 249: 91-98, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30884397

RESUMO

The Tibet Plateau, the so-called Third Pole of the world, is home to the headstreams of many great rivers. The levels of microplastic pollution in those rivers, however, are unknown. In this study, surface water and sediment samples were collected from six sampling sites along five different rivers. The surface water and sediment samples were collected with a large flow sampler and a stainless steel shovel, respectively. The abundance of microplastics ranged from 483 to 967 items/m3 in the surface water and from 50 to 195 items/kg in the sediment. A large amount of small, fibrous, transparent microplastics were found in this study. Five types of microplastics with different chemical compositions were identified using micro-Raman spectroscopy: polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyamide (PA). These results demonstrate that rivers in the Tibet Plateau have been contaminated by microplastics, not only in developed areas with intense human activity but also in remote areas, where microplastic pollution requires further attention.


Assuntos
Monitoramento Ambiental , Plásticos/análise , Poluentes Químicos da Água/análise , Poluição Ambiental , Polietileno/análise , Polipropilenos/análise , Poliestirenos , Rios/química , Análise Espectral Raman , Tibet , Água
19.
BMC Mol Biol ; 20(1): 3, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30646850

RESUMO

BACKGROUND: Physical exercise can improve brain function by altering brain gene expression. The expression mechanisms underlying the brain's response to exercise still remain unknown. miRNAs as vital regulators of gene expression may be involved in regulation of brain genes in response to exercise. However, as yet, very little is known about exercise-responsive miRNAs in brain. RESULTS: We constructed two comparative small RNA libraries of rat brain from a high-intensity intermittent swimming training (HIST) group and a normal control (NC) group. Using deep sequencing and bioinformatics analysis, we identified 2109 (1700 from HIST, 1691 from NC) known and 55 (50 from HIST, 28 from NC) novel candidate miRNAs. Among them, 34 miRNAs were identified as significantly differentially expressed in response to HIST, 16 were up-regulated and 18 were down-regulated. The results showed that all members of mir-200 family were strongly up-regulated, implying mir-200 family may play very important roles in HIST response mechanisms of rat brain. A total of 955 potential target genes of these 34 exercise-responsive miRNAs were identified from rat genes. Most of them are directly involved in the development and regulatory function of brain or nerve. Many acknowledged exercise-responsive brain genes such as Bdnf, Igf-1, Vgf, Ngf c-Fos, and Ntf3 etc. could be targeted by exercise-responsive miRNAs. Moreover, qRT-PCR and SABC immunohistochemical analysis further confirm the reliability of the expression of miRNAs and their targets. CONCLUSIONS: This study demonstrated that physical exercise could induce differential expression of rat brain miRNAs and 34 exercise-responsive miRNAs were identified in rat brain. Our results suggested that exercise-responsive miRNAs could play important roles in regulating gene expression of rat brain in response to exercise.


Assuntos
Encéfalo/metabolismo , MicroRNAs/metabolismo , Condicionamento Físico Animal , Natação , Animais , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , MicroRNAs/genética , Ratos , Análise de Sequência de RNA
20.
J Agric Food Chem ; 65(9): 1984-1991, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28209053

RESUMO

A simple, rapid, sensitive, selective, and environmentally friendly method, based on a dispersive micro solid-phase extraction approach (dispersive micro SPE) coupled with liquid chromatography-high-resolution mass spectrometry (LC-HRMS), was established for the analysis of sulfonamides in honey and milk. An efficient nontargeted screening strategy was designed to discover and identify known and unknown sulfonamides in honey and milk using full-MS/all ion fragmentation (AIF) mass spectrometry acquisition mode. The experimental parameters and conditions of dispersive micro SPE on extraction efficiency were optimized in detail. Under the optimized conditions, the dispersive micro SPE method showed a low limit of detection (LOD) for the targeted sulfonamides ranging from 0.003 to 0.2 µg/L in milk and from 0.01 to 1 µg/kg in honey with the recoveries of the analytes between 68.8 and 115.8%. Compared with the reported methods, improvements in convenience, low cost, and environmental friendliness were obtained in this study.


Assuntos
Antibacterianos/análise , Antibacterianos/isolamento & purificação , Contaminação de Alimentos/análise , Mel/análise , Leite/química , Extração em Fase Sólida/métodos , Sulfonamidas/análise , Sulfonamidas/isolamento & purificação , Animais , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/instrumentação , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...