RESUMO
Checkpoint kinase 1 inhibitors (CHK1i) have shown impressive single-agent efficacy in treatment of certain tumors, as monotherapy or potentiators of chemotherapy in clinical trials, but the sensitive tumor types and downstream effectors to dictate the therapeutic responses to CHK1i remains unclear. In this study we first analyzed GDSC (Genomics of Drug Sensitivity in Cancer) and DepMap database and disclosed that hematologic malignancies (HMs) were relatively sensitive to CHK1i or CHK1 knockdown. This notion was confirmed by examining PY34, a new and potent in-house selective CHK1i, which exhibited potent anti-HM effect in vitro and in vivo, as single agent. We demonstrated that the downregulation of c-Myc and its signaling pathway was the common transcriptomic profiling response of sensitive HM cell lines to PY34, whereas overexpressing c-Myc could partially rescue the anticancer effect of PY34. Strikingly, we revealed the significant correlations between downregulation of c-Myc and cell sensitivity to PY34 in 17 HM cell lines and 39 patient-derived cell (PDC) samples. Thus, our results demonstrate that HMs are more sensitive to CHK1i than solid tumors, and c-Myc downregulation could represent the CHK1i efficacy in HMs.
Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Neoplasias Hematológicas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/deficiência , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
HDAC inhibitors (HDACis) have been intensively studied for their roles and potential as drug targets in T-cell lymphomas and other hematologic malignancies. Bisthianostat is a novel bisthiazole-based pan-HDACi evolved from natural HDACi largazole. Here, we report the preclinical study of bisthianostat alone and in combination with bortezomib in the treatment of multiple myeloma (MM), as well as preliminary first-in-human findings from an ongoing phase 1a study. Bisthianostat dose dependently induced acetylation of tubulin and H3 and increased PARP cleavage and apoptosis in RPMI-8226 cells. In RPMI-8226 and MM.1S cell xenograft mouse models, oral administration of bisthianostat (50, 75, 100 mg·kg-1·d-1, bid) for 18 days dose dependently inhibited tumor growth. Furthermore, bisthianostat in combination with bortezomib displayed synergistic antitumor effect against RPMI-8226 and MM.1S cell in vitro and in vivo. Preclinical pharmacokinetic study showed bisthianostat was quickly absorbed with moderate oral bioavailability (F% = 16.9%-35.5%). Bisthianostat tended to distribute in blood with Vss value of 0.31 L/kg. This distribution parameter might be beneficial to treat hematologic neoplasms such as MM with few side effects. In an ongoing phase 1a study, bisthianostat treatment was well tolerated and no grade 3/4 nonhematological adverse events (AEs) had occurred together with good pharmacokinetics profiles in eight patients with relapsed or refractory MM (R/R MM). The overall single-agent efficacy was modest, stable disease (SD) was identified in four (50%) patients at the end of first dosing cycle (day 28). These preliminary in-patient results suggest that bisthianostat is a promising HDACi drug with a comparable safety window in R/R MM, supporting for its further phase 1b clinical trial in combination with traditional MM therapies.
Assuntos
Inibidores de Histona Desacetilases , Mieloma Múltiplo , Acetilação , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Bortezomib/uso terapêutico , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Ácidos Hidroxâmicos/uso terapêutico , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologiaRESUMO
Diffuse large B-cell lymphoma (DLBCL) is the most widespread type of non-Hodgkin lymphoma (NHL). As the most aggressive form of the DLBCL, the activated B-cell-like (ABC) subtype is often resistant to standard chemotherapies. Bruton's tyrosine kinase (BTK) inhibitor ibrutinib provides a potential therapeutic approach for the DLBCL but fails to improve the outcome in the phase III trial. In the current study, we investigated the molecular mechanisms underlying ibrutinib resistance and explored new combination therapy with ibrutinib. We generated an ibrutinib-resistant ABC-DLBCL cell line (OCI-ly10-IR) through continuous exposure to ibrutinib. Transcriptome analysis of the parental and ibrutinib-resistant cell lines revealed that the ibrutinib-resistant cells had significantly lower expression of the unfolded protein response (UPR) marker genes. Overexpression of one UPR branch-XBP1s greatly potentiated ibrutinib-induced apoptosis in both sensitive and resistant cells. The UPR inhibitor tauroursodeoxycholic acid (TUDCA) partially reduced the apoptotic rate induced by the ibrutinib in sensitive cells. The UPR activator 2-deoxy-D-glucose (2-DG) in combination with the ibrutinib triggered even greater cell growth inhibition, apoptosis, and stronger calcium (Ca2+) flux inhibition than either of the agents alone. A combination treatment of ibrutinib (15 mg·kg-1·d-1, po.) and 2-DG (500 mg/kg, po, b.i.d.) synergistically retarded tumor growth in NOD/SCID mice bearing OCI-ly10-IR xenograft. In addition, ibrutinib induced the UPR in the sensitive cell lines but not in the resistant cell lines of the DLBCL. There was also a combined synergistic effect in the primary resistant DLBCL cell lines. Overall, our results suggest that targeting the UPR could be a potential combination strategy to overcome ibrutinib resistance in the DLBCL.
Assuntos
Adenina/análogos & derivados , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Piperidinas/uso terapêutico , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Adenina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxiglucose/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/fisiopatologia , Camundongos Endogâmicos NOD , Camundongos SCID , Resposta a Proteínas não Dobradas/fisiologia , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Lenalidomide and its analogs have exhibited extensive anti-tumor, anti-inflammatory and immunomodulatory properties in pharmaceutical research. In this work, a series of novel thioether-containing lenalidomide analogs were designed and synthesized for biological evaluation. Lenalidomide showed significant anti-proliferative activity against the MM.1S cell line (IC50â¯=â¯50â¯nM) while it displayed no anti-proliferative activity against other treated tumor cell lines. Compared with lenalidomide, compound 3j exhibited preferable anti-proliferative activity against the MM.1S (IC50â¯=â¯1.1â¯nM), Mino (IC50â¯=â¯2.3â¯nM) and RPMI 8226â¯cell lines (IC50â¯=â¯5.5â¯nM). In addition, compound 3j displayed selective anti-proliferative activity against several tumor cell lines, including various B-NHL, MM and AML cell lines, and showed no cytotoxicity on the normal human cell line PBMC, suggesting a good safety profile. Following oral administration, compound 3j achieved a Cmax of 283â¯ng/mL at 0.83â¯h, and had a higher relative oral bioavailability value (Fâ¯=â¯39.2%) than that of CC-220 (Fâ¯=â¯22.8%), but its oral exposure in vivo was somewhat low (AUCâ¯=â¯755â¯hâ¯ng/mL). Furthermore, it was found that oral administration of compound 3j at dosages of 60â¯mg/kg could delay RPMI 8226 tumor growth in the female CB-17 SCID mice. The current work confirmed that installing thioether moiety at the 4-position of isoindolinone is an effective strategy for identifying new promising lenalidomide analogs with anti-tumor activities in preclinical study.
Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Lenalidomida/análogos & derivados , Lenalidomida/farmacologia , Sulfetos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Desenho de Fármacos , Feminino , Humanos , Lenalidomida/síntese química , Lenalidomida/farmacocinética , Camundongos Endogâmicos BALB C , Camundongos SCID , Estrutura Molecular , Relação Estrutura-Atividade , Sulfetos/síntese química , Sulfetos/química , Sulfetos/farmacocinética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The potential of specific proteasome inhibitors to act as anti-cancer agents has attracted intensive investigations. The proteasome can be covalently inhibited by epoxyketone derivatives via a two-step reaction. Several computational approaches have been developed to mimic the covalent binding event. Compound 1 composed of a six-membered heterocyclic ring was designed by using covalent docking. With a possible different binding mode from the clinical compound Carfilzomib, it occupied the S5 pocket of 20S proteasome and showed favorable inhibitory activity. Subsequently optimization and evaluation were taken place. Among these compounds, 11h demonstrated extraordinary in vitro inhibitory activity and selectivity, and good in vivo proteasome inhibitory activity, a favorable pharmacokinetic profile and xenograft tumor inhibition. The possible binding pattern of compound 11h against proteasome was further fully explored via calculations, providing a theoretical basis for finding potent proteasome inhibitors.
Assuntos
Compostos Heterocíclicos/farmacologia , Cetonas/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteassoma/química , Animais , Antineoplásicos/química , Sítios de Ligação , Compostos Heterocíclicos/química , Xenoenxertos , Humanos , Cetonas/química , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismoRESUMO
PURPOSE: To analyze whether upper airway dimensions were influenced by different sagittal skeletal pattern among adolescent patients. METHODS: Seventy-five adolescent patients were divided into 3 groups based on their ANB anglesï¼The three groups were matched for age and sexï¼ All subjects had a normodivergent skeletal patternï¼Airway lengths, cross-sectional measurements and volumes were measured by using cone-beam computed tomography (CBCT) volume scans, and two-dimensional lateral cephalograms were created and analyzed. Airway lengths, cross-sectional measurements and volumes were compared among 3 groups. Statistical analysis was performed using SPSS 22.0 software package. RESULTS: No significant difference among the three groups was found in Anp, Lnp, Lvp, Lgp and Lhp cross-sectional areas of the airway. The glossopharynx volume was smaller in Class II[(2.34±0.79)mL] than in Class â ¢[(3.18±0.63)mL] patients(P<0.05). Total upper airway volume in Class II[(13.89±2.51)mL] patients was smaller than in Class â [(16.48±4.41)mL] and â ¢[(17.47±3.55)mL] patients(P<0.05). CONCLUSIONS: Upper airway volume is significantly reduced in Class II sagittal skeletal pattern, leading to a higher risk of obstructive sleep apnea/hypopnea syndrome.