Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710962

RESUMO

The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important aquaculture animal in China and exhibits growth dimorphism. Single-male cultures are often selected for higher economic efficiency. However, the mechanism of sex differentiation in P. sinensis is not well-known. In this study, a comparative transcriptome analysis of male (ZZ)- and 17ß-oestradiol (E2)-induced pseudo-female (ZZ + E2)-stage embryonic gonads of P. sinensis was performed. A total of 420 differentially expressed genes (DEGs), which included 271 upregulated genes and 149 downregulated genes, were identified. These DEGs were mainly involved in several sex-related pathways, such as "ovarian steroidogenesis", "steroid hormone biosynthesis", "PPAR signalling pathway", and "metabolism of xenobiotics by cytochrome P450". In addition, 50 known and novel candidate genes involved in sex differentiation, such as the male-biased genes AMH, DMRT1, TBX1, and CYP26A1 and the female-biased genes CYP1A1, RASD1, and SOX17, were investigated and identified. For further verification, the full-length cDNAs of SOX17 and CYP26A1 were obtained. SOX17 contains a 1218-bp ORF and encodes 405 amino acids containing an HMG functional domain unique to the Sox superfamily. CYP26A1 contains a 1485-bp ORF and encodes 494 amino acids. Different expression levels of SOX17 and CYP26A1 could be detected in all the tested tissues of males and females. Notably, the expression of CYP26A1 was markedly greater in the gonads of male embryos (P < 0.05) than in those of female embryos, whereas the expression of SOX17 showed the opposite trend (P < 0.05). Taken together, the RNA-seq and qRT‒PCR results suggested potential roles for SOX17 and CYP26A1 in promoting female and male gonadal development, respectively, in P. sinensis. Our results provide new evidence for the mechanism of sex differentiation in P. sinensis.

2.
Genes (Basel) ; 15(2)2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38397147

RESUMO

Physiology disorders of the liver, as it is an important tissue in lipid metabolism, can cause fatty liver disease. The mechanism might be regulated by 17 circadian clock genes and 18 fat metabolism genes, together with a high-fat diet (HFD). Due to their rich nutritional and medicinal value, Chinese soft-shelled turtles (Trionyx sinensis) are very popular among the Chinese people. In the study, we aimed to investigate the influence of an HFD on the daily expression of both the core clock genes and the lipid metabolism genes in the liver tissue of the turtles. The two diets were formulated with 7.98% lipid (the CON group) and 13.86% lipid (the HFD group) to feed 180 juvenile turtles, which were randomly divided into two groups with three replicates per group and 30 turtles in each replicate for six weeks, and the diet experiment was administrated with a photophase regimen of a 24 h light/dark (12L:12D) cycle. At the end of the experiment, the liver tissue samples were collected from nine turtles per group every 3 h (zeitgeber time: ZT 0, 3, 6, 9, 12, 15, 18, 21 and 24) for 24 h to investigate the daily expression and correlation analysis of these genes. The results showed that 11 core clock genes [i.e., circadian locomotor output cycles kaput (Clock), brain and muscle arnt-like protein 1 and 2 (Bmal1/2), timeless (Tim), cryptochrome 1 (Cry2), period2 (Per2), nuclear factor IL-3 gene (Nfil3), nuclear receptor subfamily 1, treatment D, member 1 and 2 (Nr1d1/2) and retinoic acid related orphan receptor α/ß/γ ß and γ (Rorß/γ)] exhibited circadian oscillation, but 6 genes did not, including neuronal PAS domain protein 2 (Npas2), Per1, Cry1, basic helix-loop-helix family, member E40 (Bhlhe40), Rorα and D-binding protein (Dbp), and 16 lipid metabolism genes including fatty acid synthase (Fas), diacylglycerol acyltransferase 1 (Dgat1), 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr), Low-density lipoprotein receptor-related protein 1-like (Ldlr1), Lipin 1 (Lipin1), Carnitine palmitoyltransferase 1A (Cpt1a), Peroxisome proliferator activation receptor α, ß and γ (Pparα/ß/γ), Sirtuin 1 (Sirt1), Apoa (Apoa1), Apolipoprotein B (Apob), Pyruvate Dehydrogenase kinase 4 (Pdk4), Acyl-CoA synthase long-chain1 (Acsl1), Liver X receptors α (Lxrα) and Retinoid X receptor, α (Rxra) also demonstrated circadian oscillations, but 2 genes did not, Scd and Acaca, in the liver tissues of the CON group. However, in the HFD group, the circadian rhythms' expressional patterns were disrupted for the eight core clock genes, Clock, Cry2, Per2, Nfil3, Nr1d1/2 and Rorß/γ, and the peak expression of Bmal1/2 and Tim showed delayed or advanced phases. Furthermore, four genes (Cry1, Per1, Dbp and Rorα) displayed no diurnal rhythm in the CON group; instead, significant circadian rhythms appeared in the HFD group. Meanwhile, the HFD disrupted the circadian rhythm expressions of seven fat metabolism genes (Fas, Cpt1a, Sirt1, Apoa1, Apob, Pdk4 and Acsl1). Meanwhile, the other nine genes in the HFD group also showed advanced or delayed expression peaks compared to the CON group. Most importantly of all, there were remarkably positive or negative correlations between the core clock genes and the lipid metabolism genes, and their correlation relationships were altered by the HFD. To sum up, circadian rhythm alterations of the core clock genes and the lipid metabolism genes were induced by the high-fat diet (HFD) in the liver tissues of T. sinensis. This result provides experimental and theoretical data for the mass breeding and production of T. sinensis in our country.


Assuntos
Proteínas CLOCK , Ritmo Circadiano , Dieta Hiperlipídica , Tartarugas , Animais , Apolipoproteínas B , Fatores de Transcrição ARNTL/genética , Ritmo Circadiano/genética , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos/genética , Lipídeos , Fígado/metabolismo , Sirtuína 1/metabolismo , Tartarugas/genética , Proteínas CLOCK/genética
3.
Mol Biol Rep ; 51(1): 263, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302771

RESUMO

BACKGROUND: TRIM proteins, recognized as a class of E3 ubiquitin ligases, are increasingly acknowledged for their antipathogen immune functions in mammals and fish. In the Chinese soft-shelled turtle (Pelodiscus sinensis), a secondary aquatic reptile that occupies a unique evolutionary position, the TRIM gene has rarely been reported. METHODS AND RESULTS: In the present study, 48 PsTRIM proteins were identified from the genome of Pelodiscus sinensis via Hidden Markov Model (HMM) searches and Signal Transduction ATPases with Numerous Domains (SMART) analysis. These PsTRIMs were found across 43 distinct scaffolds, and phylogenetic analyses classified them into three principal clades. The PsTRIMs feature a conserved assembly of either RING-B-box-coiled-coil (RBCC) or B-box-coiled-coil (BBC) domains at the N-terminus, in addition to eight unique domains at the C-terminus, including the B30.2 domain, 19 of which were identified. Expression profiling revealed ubiquitous expression of the 48 PsTRIMs across various P. sinensis tissues. Notably, seven PsTRIMs exhibited significant differential expression in liver transcriptomes following infection with Aeromonas hydrophila. Weighted gene coexpression network analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis implicated PsTRIM14 and PsTRIM28 as key players in host defense against bacterial invasion. Real-time quantitative PCR results indicated that PsTRIM1, PsTRIM2, PsTRIM14, and PsTRIM28 experienced marked upregulation in P. sinensis livers at 12 h post-infection with A. hydrophila. CONCLUSIONS: Our study is the first to comprehensively identify and analyze the functions of TRIM genes in P. sinensis, unveiling their considerable diversity and potential roles in modulating immune responses.


Assuntos
Transcriptoma , Tartarugas , Animais , Aeromonas hydrophila , Genômica , Filogenia , Transcriptoma/genética , Proteínas com Motivo Tripartido/genética , Tartarugas/genética
4.
Front Cell Infect Microbiol ; 13: 1271912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886667

RESUMO

The Chinese soft-shelled turtle (Pelodiscus sinensis) has become increasingly susceptible to frequent diseases with the intensification of farming, which severely impacts the development of the aquaculture industry. Sodium butyrate (SB) is widely used as a feed additive due to its promotion of growth, enhancement of immune function, and antioxidative properties. This study aimed to investigate the effects of dietary SB on the growth performance, immune function, and intestinal microflora of Chinese soft-shelled turtles. A total of 300 Chinese soft-shelled turtles (mean weight: 11.36 ± 0.21g) were randomly divided into four groups with three parallel sets in each group. Each group was fed a diet supplemented with 0%, 0.005%, 0.01%, or 0.02% SB for 60 days. The results demonstrated an upward trend in weight gain rate (WGR) and specific growth rate (SGR) with increasing SB supplementation, and the experimental group fed with 0.02% SB showed a significant increase in WGR and SGR compared to other groups (P< 0.05). These levels of SB also decreased the levels of feed conversion ratio (FCR) and the total cholesterol (TC) content of Chinese soft-shelled turtles, and the 0.02% SB was significantly lower than that of other groups (P< 0.05). The activity of complement protein in vivo increased with increases in SB content, and the activities of complement C3 and C4 reached the highest level with 0.02% SB. The species abundance of the experimental group D fed with 0.02% SB was significantly higher than that of other groups (P< 0.05). Furthermore, the relative abundance of Clostridium sensu stricto 1 was significantly increased with 0.02% SB (P< 0.05). In conclusion, adding 0.02% SB to the diet improves the growth performance, feed digestion ability, and intestinal microbiota of Chinese soft-shelled turtles.


Assuntos
Microbioma Gastrointestinal , Sódio na Dieta , Tartarugas , Animais , Ácido Butírico/metabolismo , Tartarugas/metabolismo , Sódio na Dieta/metabolismo , Dieta/veterinária , Imunidade
5.
Biology (Basel) ; 12(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37508335

RESUMO

A small skeletal fossil assemblage is described for the first time from the bioclastic limestone interbeds of the siltstone-dominated Guojiaba Formation, southern Shaanxi, China. The carbonate-hosted fossils include brachiopods (Eohadrotreta zhujiahensis, Eohadrotreta zhenbaensis, Spinobolus sp., Kuangshanotreta malungensis, Kyrshabaktella sp., Lingulellotreta yuanshanensis, Eoobolus incipiens, and Eoobolus sp.), sphenothallids (Sphenothallus sp.), archaeocyaths (Robustocyathus sp. and Yukonocyathus sp.), bradoriids (Kunmingella douvillei), chancelloriids sclerites (Onychia sp., Allonnia sp., Diminia sp., Archiasterella pentactina, and Chancelloria cf. eros), echinoderm plates, fragments of trilobites (Eoredlichia sp.), and hyolithelminths. The discovery of archaeocyaths in the Guojiaba Formation significantly extends their stratigraphic range in South China from the early Tsanglangpuian at least to the late Chiungchussuan. Thus, the Guojiaba Formation now represents the lowest known stratigraphic horizon where archaeocyath fossils have been found in the southern Shaanxi area. The overall assemblage is most comparable, in terms of composition, to Small skeletal fossil (SSF) assemblages from the early Cambrian Chengjiang fauna recovered from the Yu'anshan Formation in eastern Yunnan Province. The existing position that the Guojiaba Formation is correlated with Stage 3 in Cambrian Series 2 is strongly upheld based on the fossil assemblage recovered in this study.

6.
Curr Biol ; 33(8): 1565-1572.e3, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36893760

RESUMO

Morphology usually serves as an effective proxy for functional ecology,1,2,3,4,5 and evaluating morphological, anatomical, and ecological changes permits a deeper understanding of the nature of diversification and macroevolution.5,6,7,8,9,10,11,12 Lingulid (order Lingulida) brachiopods are both diverse and abundant during the early Palaeozoic but decrease in diversity over time, with only a few genera of linguloids and discinoids present in modern marine ecosystems, resulting in them frequently being referred to as "living fossils."13,14,15 The dynamics that drove this decline remain uncertain, and it has not been determined if there is an associated decline in morphological and ecological diversity. Here, we apply geometric morphometrics to reconstruct global morphospace occupation for lingulid brachiopods through the Phanerozoic, with results showing that maximum morphospace occupation was reached by the Early Ordovician. At this time of peak diversity, linguloids with a sub-rectangular shell shape already possessed several evolutionary features, such as the rearrangement of mantle canals and reduction of the pseudointerarea, common to all modern infaunal forms. The end Ordovician mass extinction has a differential effect on linguloids, disproportionally wiping out those forms with a rounded shell shape, while forms with sub-rectangular shells survived both the end Ordovician and the Permian-Triassic mass extinctions, leaving a fauna predominantly composed of infaunal forms. For discinoids, both morphospace occupation and epibenthic life strategies remain consistent through the Phanerozoic. Morphospace occupation over time, when considered using anatomical and ecological analyses, suggests that the limited morphological and ecological diversity of modern lingulid brachiopods reflects evolutionary contingency rather than deterministic processes.


Assuntos
Ecossistema , Extinção Biológica , Animais , Biodiversidade , Invertebrados/genética , Evolução Biológica , Fósseis
7.
BMC Genomics ; 23(1): 801, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471254

RESUMO

BACKGROUND: Aquatic animals show diverse body coloration, and the formation of animal body colour is a complicated process. Increasing evidence has shown that microRNAs (miRNAs) play important regulatory roles in many life processes. The role of miRNAs in pigmentation has been investigated in some species. However, the regulatory patterns of miRNAs in reptile pigmentation remain to be elucidated. In this study, we performed an integrated analysis of miRNA and mRNA expression profiles to explore corresponding regulatory patterns in embryonic body colour formation in the soft-shelled turtle Pelodiscus sinensis. RESULTS: We identified 8 866 novel genes and 9 061 mature miRNAs in the skin of Chinese soft-shelled turtles in three embryonic stages (initial period: IP, middle period: MP, final period: FP). A total of 16 563 target genes of the miRNAs were identified. Furthermore, we identified 2 867, 1 840 and 4 290 different expression genes (DEGs) and 227, 158 and 678 different expression miRNAs (DEMs) in IP vs. MP, MP vs. FP, and IP vs. FP, respectively. Among which 72 genes and 25 miRNAs may be related to turtle pigmentation in embryonic development. Further analysis of the novel miRNA families revealed that some novel miRNAs related to pigmentation belong to the miR-7386, miR-138, miR-19 and miR-129 families. Novel_miR_2622 and novel_miR_2173 belong to the miR-19 family and target Kit and Gpnmb, respectively. The quantification of novel_miR_2622 and Kit revealed negative regulation, indicating that novel_miR_2622 may participate in embryonic pigmentation in P. sinensis by negatively regulating the expression of Kit. CONCLUSIONS: miRNA act as master regulators of biological processes by controlling the expression of mRNAs. Considering their importance, the identified miRNAs and their target genes in Chinese soft-shelled turtle might be useful for investigating the molecular processes involved in pigmentation. All the results of this study may aid in the improvement of P. sinensis breeding traits for aquaculture.


Assuntos
MicroRNAs , Tartarugas , Animais , Transcriptoma , Tartarugas/genética , MicroRNAs/genética , Pigmentação da Pele/genética , Desenvolvimento Embrionário/genética , China
8.
Biology (Basel) ; 10(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34827211

RESUMO

Although hemorrhagic sepsis caused by Aeromonas hydrophila infection is the dominant disease in the aquaculture of Chinese soft-shelled turtle, information on its molecular pathology is seriously limited. In this study, ninety turtles intraperitoneally injected with A. hydrophila exhibited two different phenotypes based on the pathological symptoms, referred to as active and inactive turtles. Comparative transcriptomes of liver and spleen from these two groups at 6, 24, and 72 h post-injection (hpi) were further analyzed. The results showed that cytokine-cytokine receptor interaction, PRRs mediated signaling pathway, apoptosis, and phagocytosis enriched in active and inactive turtles were significantly different. Pro-inflammatory cytokines, the TLR signaling pathway, NLR signaling pathway, and RLR signaling pathway mediating cytokine expression, and apoptosis-related genes, were significantly up-regulated in inactive turtles at the early stage (6 hpi). The significant up-regulation of phagocytosis-related genes occurred at 24 hpi in inactive turtles and relatively lagged behind those in active turtles. The anti-inflammatory cytokine, IL10, was significantly up-regulated during the tested periods (6, 24, and 72 hpi) in active turtles. These findings offer valuable information for the understanding of molecular immunopathogenesis after A. hydrophila infection, and facilitate further investigations on strategies against hemorrhagic sepsis in Chinese soft-shelled turtle T. sinensis.

9.
Mater Sci Eng C Mater Biol Appl ; 127: 112247, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34225886

RESUMO

The osteogenic activity of medical metal can be improved by lowering its surface stiffness and elastic modulus. However, it is very difficult to directly reduce the elastic modulus of medical metal surfaces. In this paper, with selected parameters, the titanium surface was treated via femtosecond laser irradiation. Micro indentation revealed that the femtosecond laser ablation can effectively reduce the surface Young's modulus and Vickers hardness of titanium. Besides, In order to explain the mechanical properties of degradation of titanium surface, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) was used to simulate the process of laser ablation process of titanium surface, and it was found that after the ablation of titanium surface, voids were produced in the subsurface layer. The simulation showed that the voids are formed by the cavitation of metastable liquid induced by high tensile stress and high temperature during femtosecond laser irradiation. Subsurface voids with a thickness of about 40 nm were observed under the oxide layer in the experiment. Cell experiments showed that the surface with low Young's modulus was more conducive to cell proliferation and osteogenic differentiation.


Assuntos
Nanoporos , Osteogênese , Lasers , Próteses e Implantes , Propriedades de Superfície , Titânio
11.
IEEE Trans Neural Netw Learn Syst ; 31(9): 3570-3578, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31689218

RESUMO

Reinforcement learning (RL) is an efficient learning approach to solving control problems for a robot by interacting with the environment to acquire the optimal control policy. However, there are many challenges for RL to execute continuous control tasks. In this article, without the need to know and learn the dynamic model of a robotic manipulator, a kernel-based dynamic model for RL is proposed. In addition, a new tuple is formed through kernel function sampling to describe a robotic RL control problem. In this algorithm, a reward function is defined according to the features of tracking control in order to speed up the learning process, and then an RL tracking controller with a kernel-based transition dynamic model is proposed. Finally, a critic system is presented to evaluate the policy whether it is good or bad to the RL control tasks. The simulation results illustrate that the proposed method can fulfill the robotic tracking tasks effectively and achieve similar and even better tracking performance with much smaller inputs of force/torque compared with other learning algorithms, demonstrating the effectiveness and efficiency of the proposed RL algorithm.

12.
Parasitol Res ; 118(6): 1731-1739, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31049695

RESUMO

The aim of this study was to evaluate the effect of trypanosomes on cultured largemouth bass (Micropterus salmoides) and describe the taxonomic identification of the parasite. The effects of the parasite on M. salmoides were examined based on clinical symptoms, hemograms, histopathology, and serum biochemistry. Diseased fish showed typical clinical symptoms of trypanosomiasis, which included lethargy, anorexia, and histopathological lesions in the liver, head kidney, and spleen. The serum of diseased fish had significantly lower concentrations of glucose, triglyceride, and low-density lipoprotein, and significantly higher alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH) activities. The morphology of the trypanosomes was also analyzed using light microscopy, and their 18S rDNA sequence was analyzed to establish genetic relationships with other known strains. We found that the trypomastigote form of the trypanosomes from M. salmoides was similar to those isolated from Pelteobagrus fulvidraco. The trypanosomes had a slender and narrow body with a relatively long free flagellum, not well-developed undulating membrane, and an oval kinetoplast located near the subterminal posterior end of the body. The 18S rDNA sequences of the trypanosome from M. salmoides had the highest similarity (99.8%) with that of P. fulvidraco, suggesting they are identical species. Based on the differences in morphological characteristics and 18S rDNA sequence compared to trypanosomes isolated from other freshwater fish, it is considered as a new species and we propose the name Trypanosoma micropteri n. sp.


Assuntos
Doenças dos Peixes/parasitologia , Trypanosoma/classificação , Tripanossomíase/veterinária , Animais , Bass/parasitologia , Peixes-Gato/parasitologia , China , DNA Ribossômico/genética , Água Doce/parasitologia , Filogenia , Trypanosoma/genética , Trypanosoma/isolamento & purificação , Tripanossomíase/parasitologia , Tripanossomíase/patologia
13.
Fish Shellfish Immunol ; 88: 111-116, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30797068

RESUMO

The rabbitfish Siganus oramin is resistant to the ciliate parasite Cryptocaryon irritans. L-amino acid oxidase (LAAO) protein from rabbitfish can kill C. irritans in vitro, however, other immune defence mechanisms against C. irritans remains unknown. Here, we generated transcriptomes of rabbitfish skin at 12 h post infection (PI) by C. irritans. The transcriptomes contained 238, 504, 124 clean reads were obtained and then assembled into 258,869 unigenes with an average length of 621 bp and an N50 of 833 bp. Among them, we obtained 418 differentially expressed genes (DEGs) in the skin of rabbitfish under C. irritans infection and control conditions, including 336 significantly up-regulated genes and 82 significantly down-regulated genes. Seven immune-related categories with 32 differentially expressed immune genes were obtained using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. DEGs included innate immune molecules, such as LAAO, antimicrobial peptide, lysozyme g, as well as complement components, chemokines and chemokine receptors, NOD-like receptor/Toll-like receptor signaling pathway molecules, antigen processing and T/B cell activation and proliferation molecules. We further validated the expression results of nine immune-related DEGs using quantitative real-time PCR. This study provides new insights into the early immune response of a host that is resistant to C. irritans.


Assuntos
Infecções por Cilióforos/imunologia , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Animais , Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Peixes/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hymenostomatida/fisiologia , Imunidade Inata/genética
14.
Fish Shellfish Immunol ; 84: 377-383, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30308296

RESUMO

Streptococcus agalactiae is the major etiological agent of streptococcosis, which is responsible for huge economic losses in fishery, particularly in tilapia (Oreochromis niloticus) aquaculture. A research priority to control streptococcosis is to develop vaccines, so we sought to figure out the immunogenic proteins of S. agalactiae and screen the vaccine candidates for streptococcosis in the present study. Immunoproteomics, a technique involving two-dimensional gel electrophoresis (2-DE) followed by immunoblotting and mass spectrometry (MS), was employed to investigate the immunogenic proteins of S. agalactiae THN0901. Whole-cell soluble proteins were separated using 2-DE, and the immunogenic proteins were detected by western blotting using rabbit anti-S. agalactiae sera. A total of 17 immunoreactive spots on the soluble protein profile, corresponding to 15 different proteins, were identified by MALDI-TOF/TOF MS. Among the immunogenic proteins, GroEL attracted our attention as it was demonstrated to be immunogenic and protective against other streptococci. Nevertheless, to date, there have been no published reports on the immunogenicity and protective efficacy of GroEL against piscine S. agalactiae. Therefore, recombinant GroEL (rGroEL) was expressed in Escherichia coli BL21 (DE3) and purified by affinity chromatography. Immunization of tilapia with rGroEL resulted in an increase in antibody titers and conferred protection against S. agalactiae, with the relative percentage survival of 68.61 ±â€¯7.39%. The immunoproteome in the present study narrows the scope of vaccine candidates, and the evaluation of GroEL immunogenicity and protective efficacy shows that GroEL forms an ideal candidate molecule in subunit vaccine against S. agalactiae.


Assuntos
Proteínas de Bactérias/farmacologia , Vacinas Bacterianas/farmacologia , Chaperonina 60/farmacologia , Ciclídeos , Doenças dos Peixes/prevenção & controle , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/imunologia , Animais , Proteínas de Bactérias/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Chaperonina 60/administração & dosagem , Escherichia coli/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/farmacologia
15.
Dev Comp Immunol ; 90: 152-156, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30248360

RESUMO

Transforming growth factor-ß activated kinase 1 (TAK1) is a crucial signal transducer in multiple signaling pathways. TAK1 binds TAB1, TAB2, and TAB3, which act as activators and adaptors that specifically regulate the activation of TAK1. To date, the role of TABs is largely unknown in fish. In the present study, a TAB1 cDNA sequence was identified in grouper (Epinephelus coioides), and designated EcTAB1. The full-length open reading frame of EcTAB1 is 1, 521 bp; it encodes 506 amino acids that contains an N-terminal PP2C domain. Many important functional sites in mammalian TAB1 were conserved in TAB1 from grouper and from other fish. Multiple sequence alignment showed that EcTAB1 protein shared high sequence identity with TAB1 of other fish, especially with Stegastes partitus (95% identity). TAB1 was clustered into the same subgroup with other fish TAB1 in the phylogenetic tree. Tissue expression analysis indicated that TAB1 was widely distributed in different tissues. After infection with Cryptocaryon irritans, EcTAB1 expression was up-regulated in the infection site (gills). Besides, EcTAB1 was expressed throughout the grouper spleen (GS) cells and significantly enhanced the activation of NF-κB.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Infecções por Cilióforos/imunologia , Cilióforos/fisiologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Brânquias/imunologia , Perciformes/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Clonagem Molecular , Proteínas de Peixes/metabolismo , Brânquias/parasitologia , Humanos , NF-kappa B/metabolismo , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Filogenia , Alinhamento de Sequência , Transdução de Sinais , Regulação para Cima
16.
Neural Comput ; 30(7): 1983-2004, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29652591

RESUMO

We propose a neural network model for reinforcement learning to control a robotic manipulator with unknown parameters and dead zones. The model is composed of three networks. The state of the robotic manipulator is predicted by the state network of the model, the action policy is learned by the action network, and the performance index of the action policy is estimated by a critic network. The three networks work together to optimize the performance index based on the reinforcement learning control scheme. The convergence of the learning methods is analyzed. Application of the proposed model on a simulated two-link robotic manipulator demonstrates the effectiveness and the stability of the model.


Assuntos
Redes Neurais de Computação , Robótica/métodos , Simulação por Computador , Dinâmica não Linear , Reforço Psicológico
17.
Fish Shellfish Immunol ; 69: 46-51, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28811226

RESUMO

Interleukin-17 receptors (IL17Rs) mediate the activation of several downstream signal pathways to induce inflammatory response and contribute to the pathology of many autoimmune diseases. In this study, six IL17Rs (IL17RA1, RA2, RB, RC, RD and RE) were cloned and characterized from Epinephelus coioides, an orange-spotted grouper. Multiple sequence alignment and structural analysis revealed that all members of IL17Rs were low in sequence identity with each other. But their structures were conservative in grouper, which contain signal peptide, extracellular FNIII domain (IL17RA1/RA2/RB) or IL-17_R_N domain (IL17RC/RD/RE), transmembrane domain and SEFIR domain in their intracellular region. The analysis of tissue distribution showed these six genes were ubiquitously and differentially expressed in all major types of tissues. What's more, it is interesting to find their high expression in immune tissues (liver, gill, skin and thymus). IL17RA1 and IL17RA2 were significantly down-regulated at all time-points in gill and spleen after Cryptocaryon irritans infection, however, there was no significant change in other grouper IL17Rs. It suggests that the C. irritans may escape from the host immunity or the host prevents serious inflammation by inhibiting the expression of ILl7Rs.


Assuntos
Bass , Infecções por Cilióforos/veterinária , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Receptores de Interleucina-17/genética , Animais , Cilióforos/fisiologia , Infecções por Cilióforos/genética , Infecções por Cilióforos/imunologia , Doenças dos Peixes/genética , Proteínas de Peixes/metabolismo , Distribuição Aleatória , Receptores de Interleucina-17/metabolismo , Análise de Sequência de DNA/veterinária
18.
Fish Shellfish Immunol ; 66: 398-410, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28526573

RESUMO

Fish skin is the largest immunologically active mucosal organ, providing first-line defense against external pathogens. However, the skin-associated immune mechanisms of fish are still unclear. Cryptocaryon irritans is an obligate ectoparasitic ciliated protozoan that infects almost all marine fish, and is believed to be an excellent pathogen model to study fish mucosal immunity. In this study, a de novo transcriptome assembly of Epinephelus coioides skin post C. irritans tail-infection was performed for the first time using the Illumina HiSeq™ 2500 system. Comparative analyses of infected skin (group Isk) and uninfected skin (group Nsk) from the same challenged fish and control skin (group C) from uninfected control fish were conducted. As a result, a total of 91,082 unigenes with an average length of 2880 base pairs were obtained and among them, 38,704 and 48,617 unigenes were annotated based on homology with matches in the non-redundant and zebrafish database, respectively. Pairwise comparison resulted in 10,115 differentially-expressed genes (DEGs) in the Isk/C group comparison (4,983 up-regulated and 5,132 down-regulated), 2,275 DEGs in the Isk/Nsk group comparison (1,319 up-regulated and 956 down-regulated) and 4,566 DEGs in the Nsk/C group comparison (1,534 up-regulated and 3,032 down-regulated). Seven immune-related categories including 91 differentially-expressed immune genes (86 up-regulated and 5 down-regulated) were scrutinized. Both DEGs and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and immune-related gene expression analysis were used, and both analyses showed that the genes were more significantly altered in the locally-infected skin than in the uninfected skin of the same challenged fish. This suggests the skin's local immune response is important for host defense against this ectoparasite infection. Innate immune molecules, including hepcidin, C-type lectin, transferrin, transferrin receptor protein, serum amyloid A, cathepsin and complement components were significantly up-regulated (fold-change ranged from 3.3 to 12,944) in infected skin compared with control skin. The up-regulation of chemokines and chemokine receptors and activation of the leukocyte transendothelial migration pathway suggested that leucocytes intensively migrated to the local infected sites to mount a local immune defense. Toll-like receptors (TLRs) 1, 2, 5 and 5S were most significantly up-regulated in the infected skin, suggesting that these TLRs may be involved in parasite pathogen-associated molecular pattern (PAMPs) recognition. Up-regulation of the dendritic cell markers CD209 and CD83 and other antigen presentation pathway molecules provided evidence for skin local antigen presentation. Up-regulation of the T cell markers CD4 and CD48, B cell markers CD22 and CD81 and B cell receptor signaling kinase Lyn, showed the presence and population expansion of T/B cells at locally-infected sites, which suggested possible activation of a local specific immune response in the skin. Our results will facilitate in-depth understanding of local immune defense mechanisms in fish skin against ectoparasite infection.


Assuntos
Bass , Infecções por Cilióforos/veterinária , Doenças dos Peixes/imunologia , Imunidade nas Mucosas , Dermatopatias/veterinária , Transcriptoma , Animais , Cilióforos/fisiologia , Infecções por Cilióforos/genética , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/parasitologia , Doenças dos Peixes/genética , Doenças dos Peixes/parasitologia , Expressão Gênica , Distribuição Aleatória , Transdução de Sinais , Dermatopatias/genética , Dermatopatias/imunologia , Dermatopatias/parasitologia , Cauda/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...