RESUMO
Organic photoluminescent macrocyclic hosts have been widely advanced in many fields. Phosphorescent hosts with the ability to bind organic guests have rarely been reported. Herein, acyclic cucurbituril modified with four carboxylic acids (ACB-COOH) is mined to present uncommon purely organic room-temperature phosphorescence (RTP) at 510 nm with a lifetime of 1.86 µs. Its RTP properties are significantly promoted with an extended lifetime up to 2.12 s and considerable quantum yield of 6.29% after assembly with a polyvinyl alcohol (PVA) matrix. By virtue of the intrinsic self-crimping configuration of ACB-COOH, organic guests, including fluorescence dyes (Rhodamine B (RhB) and Pyronin Y (PyY)) and a drug molecule (morphine (Mor)), could be fully encapsulated by ACB-COOH to attain energy transfer involving phosphorescent acyclic cucurbituril. Ultimately, as-prepared systems are successfully exploited to establish multicolor afterglow materials and visible sensing of morphine. As an expansion of phosphorescent acyclic cucurbituril, the host afterglow color can be readily regulated by attaching different aromatic sidewalls. This study develops the fabrication strategies and application scope of a supramolecular phosphorescent host and opens up a new direction for the manufacture of intelligent long-lived luminescent materials.
RESUMO
Herein, we reported solid supramolecular bromonaphthylpyridinium polymers (P-BrNp), which exhibit tunable phosphorescence emission in the amorphous state enabled by sulfobutylether-ß-cyclodextrin (SBE-ß-CD) and diarylethene derivatives. The monomer BrNp gave single fluorescence emission at 490â nm, while an apparent room-temperature phosphorescence (RTP) at 550â nm emerged for P-BrNp copolymers with various feed ratios. Through fluorescence-phosphorescence dual emission, P-BrNp-0.1 displayed an ultrahigh white-light emission quantum yield of 83.9 %. Moreover, the subsequent assembly with SBE-ß-CD further enhanced the phosphorescent quantum yield of P-BrNp-0.1 from 64.1 % to 71.3 %, accompanied by the conversion of photoluminescence emission from white to yellow. Diarylethene monomers were introduced as photoswitches to realize reversible RTP emission, which can be used in switchable data encryption and multifunctional writing ink.
RESUMO
Noncovalent macrocycle-confined supramolecular purely organic room-temperature phosphorescence (RTP) is a current research hotspot. Herein, a high-efficiency noncovalent polymerization-activated near-infrared (NIR)-emissive RTP-harvesting system in aqueous solution based on the stepwise confinement of cucurbit[7]uril (CB[7]) and ß-cyclodextrin-grafted hyaluronic acid (HACD), is reported. Compared with the dodecyl-chain-bridged 6-bromoisoquinoline derivative (G), the dumbbell-shaped assembly GâCB[7] presents an appeared complexation-induced RTP signal at 540 nm via the first confinement of CB[7]. Subsequently, benefitting from the stepwise confinement encapsulation of the ß-cyclodextrin cavity, the subsequent noncovalent polymerization of the binary GâCB[7] assembly enabled by HACD can contribute to the further-enhanced RTP emission intensity approximately eight times in addition to an increased lifetime from 59.0 µs to 0.581 ms. Moreover, upon doping a small amount of two types of organic dyes, Nile blue or tetrakis(4-sulfophenyl)porphyrin as an acceptor into the supramolecular confinement assembly GâCB[7]â@âHACD, efficient RTP energy transfer occurs accompanied by a long-lived NIR-emitting performance (680 and 710 nm) with a high donor/acceptor ratio. Intriguingly, the prepared RTP-harvesting system is successfully applied for targeted NIR imaging of living tumor cells by utilizing the targeting ability of hyaluronic acid, which provides a new strategy to create advanced water-soluble NIR phosphorescent materials.
Assuntos
Porfirinas , beta-Ciclodextrinas , Corantes , Transferência Ressonante de Energia de Fluorescência/métodos , Ácido Hialurônico , Polimerização , Temperatura , ÁguaRESUMO
Despite ongoing research into photocontrolled supramolecular switches, reversible photoswitching between room-temperature phosphorescence (RTP) and delayed fluorescence is rare in the aqueous phase. Herein, an efficient RTP-fluorescence switch based on a cascaded supramolecular assembly is reported, which is constructed using a 6-bromoisoquinoline derivative (G3 ), cucurbit[7]uril (CB[7]), sulfonatocalix[4]arene (SC4A4), and a photochromic spiropyran (SP) derivative. Benefiting from the confinement effect of CB[7], initial complexation with CB[7] arouses an emerging RTP signal at 540 nm for G3 . This structure subsequently coassembles with amphiphilic SC4A4 to form tight spherical nanoparticles, thereby further facilitating RTP emission (≈12 times) in addition to a prolonged lifetime (i.e., 1.80 ms c.f., 50.1 µs). Interestingly, following cascaded assembly with a photocontrolled energy acceptor (i.e., SP), the efficient light-driven RTP energy transfer occurs when SP is transformed to its fluorescent merocyanine (MC) state. Ultimately, this endows the final system with an excellent RTP-fluorescence photoswitching property accompanied by multicolor tunable long-lived emission. Moreover, this switching process can be reversibly modulated over multiple cycles under alternating UV and visible photoirradiation. Finally, the prepared switch is successfully applied to photocontrolled multicolor cell labeling to offer a new approach for the design and fabrication of novel advanced light-responsive RTP materials in aqueous environments.