RESUMO
Several human fungal pathogens, including drug-resistant Candida auris and species of the Candida haemulonii complex, have emerged over the past two decades, posing new threats to human health. In this study, we report the isolation and identification of a novel species belonging to the genus Clavispora, herein named as Cl avispora sputum, from a clinical sputum sample of a COVID-19 patient. Cl . sputum is phylogenetically closely related to fungal pathogens Clavispora lusitaniae (syn. Candida lusitaniae) and C. auris. When grown on CHROMagar Candida Plus medium, Cl. sputum exhibited a similar coloration to C. auris strain CBS12372. Cl. sputum was able to develop weak filaments on CM medium. Although Cl. sputum and Cl. lusitaniae are phylogenetically closely related, comparative genomic and synteny analyses indicated significant chromosomal rearrangements between the two species. Although Cl. sputum could not grow at 37 °C under regular culture condition, an increased fungal burden in the lung tissue of a mouse systemic infection model implies that it could be a potential opportunistic pathogenic yeast in humans.
RESUMO
Candida krusei, also known as Pichia kudriavzevii, is an emerging non-albicans Candida (NAC) species causing both superficial and deep-seated infections in humans. This fungal pathogen is inherently resistant to the first-line antifungal drug, fluconazole, and is widely distributed in natural environments such as soil, foods, vegetables, and fruits. In this study, we collected 86 C. krusei strains from clinical settings and traditional fermented vegetables from different areas of China. Compared to C. krusei strains from fermented vegetables, clinical isolates exhibited a higher ability to undergo filamentation and biofilm development, which could facilitate its host colonization and infections. Isolates from fermented vegetables showed higher resistance to several antifungal drugs including fluconazole, voriconazole, itraconazole, amphotericin B, and caspofungin, than clinical strains, while they were more susceptible to posaconazole than clinical strains. Although C. krusei has been thought to be a diploid organism, we found that one-fourth of clinical strains and the majority of isolates from fermented vegetables (87.5%) are triploid. Whole-genome sequencing and population genetic analyses demonstrated that isolates from clinical settings and fermented food are genetically associated, and distributed across a wide range of genetic clusters. Additionally, we found that six nucleotide substitutions at the promoter region of the ABC11 gene, encoding a multidrug efflux pump, could play a critical role in antifungal resistance in this species. Given the ubiquitous distribution of C. krusei strains in fermented vegetables and their genetic association with clinical strains, a One Health approach will be necessary to control the prevalence of this pathogen.
Assuntos
Antifúngicos , Candida , Candidíase , Variação Genética , Testes de Sensibilidade Microbiana , Verduras , Verduras/microbiologia , China , Antifúngicos/farmacologia , Humanos , Candida/genética , Candida/isolamento & purificação , Candida/classificação , Candida/efeitos dos fármacos , Candidíase/microbiologia , Farmacorresistência Fúngica/genética , Fermentação , Biofilmes/crescimento & desenvolvimento , Pichia/genética , Pichia/isolamento & purificação , Pichia/classificação , Pichia/efeitos dos fármacos , Alimentos Fermentados/microbiologia , Sequenciamento Completo do GenomaRESUMO
The incidence of multiple primary lung cancer (MPLC) is increasing, with some of our surgical patients exhibiting numerous lesions. We defined lung cancer with five or more primary lesions as super MPLCs. Elucidating the genomic characteristics of this special MPLC subtype can help reduce disease burden and understand tumor evolution. In our cohort of synchronous super early-stage MPLCs (PUMCH-ssesMPLC), whole-exome sequencing on 130 resected malignant specimens from 18 patients provided comprehensive super-MPLC genomic landscapes. Mutations are enriched in PI3k-Akt and MAPK pathways. Their BRAF mutation frequency (31.5%) is significantly higher than MPLC with fewer lesions and early-stage single-lesion cancer, while EGFR mutations are significantly fewer (13.8%). As lesion counts increase, BRAF mutations gradually become dominant. Also, invasive lesions more tend to have classic super-MPLC mutation patterns. High-frequency BRAF mutations, especially Class II, and low-frequency EGFR mutations could be a reason for the limited effectiveness of targeted therapy in super-MPLC patients.
RESUMO
Candida auris, an emerging fungal pathogen characterized by multidrug resistance and high-mortality nosocomial infections, poses a serious global health threat. However, the precise and rapid identification and characterization of C. auris remain a challenge. Here, we employed Raman spectroscopy combined with machine learning to identify C. auris isolates and its closely related species as well as to predict antifungal resistance and key virulence factors at the single-cell level. The average accuracy of identification among all Candida species was 93.33%, with an accuracy of 98% for the clinically simulated samples. The drug susceptibility of C. auris to fluconazole and amphotericin B was 99% and 94%, respectively. Furthermore, the phenotypic prediction of C. auris yielded an accuracy of 100% for aggregating cells and 97% for filamentous cells. This proof-of-concept methodology not only precisely identifies C. auris at the clade-specific level but also rapidly predicts the antifungal resistance and biological characteristics, promising a valuable medical diagnostic tool to combat this multidrug-resistant pathogen in the future. IMPORTANCE: Currently, combating Candida auris infections and transmission is challenging due to the lack of efficient identification and characterization methods for this species. To address these challenges, our study presents a novel approach that utilizes Raman spectroscopy and artificial intelligence to achieve precise identification and characterization of C. auris at the singe-cell level. It can accurately identify a single cell from the four C. auris clades. Additionally, we developed machine learning models designed to detect antifungal resistance in C. auris cells and differentiate between two distinct phenotypes based on the single-cell Raman spectrum. We also constructed prediction models for detecting aggregating and filamentous cells in C. auris, both of which are closely linked to its virulence. These results underscore the merits of Raman spectroscopy in the identification and characterization of C. auris, promising improved outcomes in the battle against C. auris infections and transmission.
RESUMO
The giant freshwater prawn (GFP; Macrobrachium rosenbergii), a tropical species cultured worldwide, has high market demand and economic value. Male GFP growth varies considerably; however, the mechanisms underlying these growth differences remain unclear. In this study, we collected gut and hemolymphatic samples of large (ML), medium (MM), and small (MS) male GFPs and used the 16S rRNA sequencing and liquid chromatography-mass spectrometry-based metabolomic methods to explore gut microbiota and metabolites associated with GFP growth. The dominant bacteria were Firmicutes and Proteobacteria; higher growth rates correlated with a higher Firmicutes/Bacteroides ratio. Serum metabolite levels significantly differed between the ML and MS groups. We also combined transcriptomics with integrative multiomic techniques to further elucidate systematic molecular mechanisms in the GFPs. The results revealed that Faecalibacterium and Roseburia may improve gut health in GFP through butyrate release, affecting physiological homeostasis and leading to metabolic variations related to GFP growth differences. Notably, our results provide novel, fundamental insights into the molecular networks connecting various genes, metabolites, microbes, and phenotypes in GFPs, facilitating the elucidation of differential growth mechanisms in GFPs.
RESUMO
Filamentous cell growth is a vital property of fungal pathogens. The mechanisms of filamentation in the emerging multidrug-resistant fungal pathogen Candida auris are poorly understood. Here, we show that exposure of C. auris to glycerol triggers a rod-like filamentation-competent (RL-FC) phenotype, which forms elongated filamentous cells after a prolonged culture period. Whole-genome sequencing analysis reveals that all RL-FC isolates harbor a mutation in the C2H2 zinc finger transcription factor-encoding gene GFC1 (Gfc1 variants). Deletion of GFC1 leads to an RL-FC phenotype similar to that observed in Gfc1 variants. We further demonstrate that GFC1 mutation causes enhanced fatty acid ß-oxidation metabolism and thereby promotes RL-FC/filamentous growth. This regulation is achieved through a Multiple Carbon source Utilizer (Mcu1)-dependent mechanism. Interestingly, both the evolved RL-FC isolates and the gfc1Δ mutant exhibit an enhanced ability to colonize the skin. Our results reveal that glycerol-mediated GFC1 mutations are beneficial during C. auris skin colonization and infection.
Assuntos
Candida auris , Candidíase , Proteínas Fúngicas , Mutação , Candidíase/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candida auris/genética , Candida auris/metabolismo , Camundongos , Animais , Glicerol/metabolismo , Adaptação Fisiológica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação Fúngica da Expressão Gênica , HumanosRESUMO
In recent years, significant improvement has been made in the management of non-small cell lung cancer (NSCLC), primarily driven by advances in targeted therapy and immunotherapy. Research on neoadjuvant targeted therapy has also experienced considerable development, primarily directed towards NSCLC harboring epidermal growth factor receptor or anaplastic lymphoma kinase mutations. Nevertheless, there remains a dearth of studies investigating neoadjuvant targeted therapy in the context of BRAF (V-Raf murine sarcoma viral oncogene homolog B) V600E mutant NSCLC. Herein, we describe the clinical trajectory of a stage IIIA NSCLC patient who underwent a two-month course of neoadjuvant targeted therapy comprising BRAF and MEK (mitogen-activated extracellular signal-regulated kinase) inhibitors prior to surgical intervention, and subsequent postoperative evaluation unveiled a pathological complete response. The case reported here indicates the efficacy and safety of combining BRAF and MEK inhibitors as neoadjuvant targeted therapy in BRAF V600E-mutant NSCLC and suggests the potential viability of such a therapeutic modality in improving treatment outcomes in this subset of NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mutação , Terapia Neoadjuvante , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Terapia Neoadjuvante/métodos , Estadiamento de Neoplasias , Masculino , Pessoa de Meia-Idade , FemininoRESUMO
The increase in the detection rate of synchronous multiple primary lung cancer (MPLC) has posed remarkable clinical challenges due to the limited understanding of its pathogenesis and molecular features. Here, comprehensive comparisons of genomic and immunologic features between MPLC and solitary lung cancer nodule (SN), as well as different lesions of the same patient, were performed. Compared with SN, MPLC displayed a lower rate of EGFR mutation but higher rates of BRAF, MAP2K1, and MTOR mutation, which function exactly in the upstream and downstream of the same signaling pathway. Considerable heterogeneity in T cell receptor (TCR) repertoire exists among not only different patients but also among different lesions of the same patient. Invasive lesions of MPLC exhibited significantly higher TCR diversity and lower TCR expansion than those of SN. Intriguingly, different lesions of the same patient always shared a certain proportion of TCR clonotypes. Significant clonal expansion could be observed in shared TCR clonotypes, particularly in those existing in all lesions of the same patient. In conclusion, this study provided evidences of the distinctive mutational landscape, activation of oncogenic signaling pathways, and TCR repertoire in MPLC as compared with SN. The significant clonal expansion of shared TCR clonotypes demonstrated the existence of immune commonality among different lesions of the same patient and shed new light on the individually tailored precision therapy for MPLC.
Assuntos
Neoplasias Pulmonares , Mutação , Neoplasias Primárias Múltiplas , Receptores de Antígenos de Linfócitos T , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias Primárias Múltiplas/imunologia , Neoplasias Primárias Múltiplas/genética , Neoplasias Primárias Múltiplas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , IdosoRESUMO
Candida auris has become a serious threat to public health. The mechanisms of how this fungal pathogen adapts to the mammalian host are poorly understood. Here we report the rapid evolution of an adaptive C. auris multicellular aggregative morphology in the murine host during systemic infection. C. auris aggregative cells accumulate in the brain and exhibit obvious advantages over the single-celled yeast-form cells during systemic infection. Genetic mutations, specifically de novo point mutations in genes associated with cell division or budding processes, underlie the rapid evolution of this aggregative phenotype. Most mutated C. auris genes are associated with the regulation of cell wall integrity, cytokinesis, cytoskeletal properties, and cellular polarization. Moreover, the multicellular aggregates are notably more recalcitrant to the host antimicrobial peptides LL-37 and PACAP relative to the single-celled yeast-form cells. Overall, to survive in the host, C. auris can rapidly evolve a multicellular aggregative morphology via genetic mutations.
Assuntos
Candidíase , Sepse , Animais , Camundongos , Candida/genética , Candidíase/microbiologia , Candida auris , Saccharomyces cerevisiae , Fenótipo , Antifúngicos , Testes de Sensibilidade Microbiana , MamíferosRESUMO
The emerging human fungal pathogen Candida auris has become a serious threat to public health. This pathogen has spread to 10 provinces in China as of December 2023. Here we describe 312 C. auris-associated hospitalizations and 4 outbreaks in healthcare settings in China from 2018 to 2023. Three genetic clades of C. auris have been identified during this period. Molecular epidemiological analyses indicate that C. auris has been introduced and local transmission has occurred in multiple instances in China. Most C. auris isolated from China (98.7%) exhibited resistance to fluconazole, while only a small subset of strains were resistant to amphotericin B (4.2%) and caspofungin (2.2%).
Assuntos
Antifúngicos , Candidíase , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Candidíase/microbiologia , Candida auris , Surtos de Doenças , China/epidemiologia , Testes de Sensibilidade MicrobianaRESUMO
Phosphonate used as scale inhibitor is a non-negligible eutrophic contaminant in corresponding polluted waters. Besides, its conversion to orthophosphate (ortho-P) is a precondition for realizing bioavailable phosphorus recovery. Due to the feeble degradation efficiency with less than 30â¯% from classical Fenton commonly used in industrial wastewater treatment and itself vulnerable to strong inhibition interference of matrix chloride ions, we proposed an electrochemical approach to transform the native salt in the solution into oxidizing substances, sort of achieving beneficial utilization of matrix waste, and enhanced the ortho-P conversion rate of 1-Hydroxyethane-1,1-diphosphonic acid (HEDP) to 89.2â¯% (± 3.6â¯%). In electrochlorination system, it was found that HEDP rapidly complexed with Fe(II) and then coordinated in-situ Fe(III) to release free HEDP via intramolecular metal-ligand electron transfer reaction. The subsequent degradation mainly rooted in the oxidation of pivotal reactive species HClO, FeIVO2+ and 1O2, causing C-P and CC bonds to fracture in sequence. Eventually the organically bound phosphorus of HEDP was recovered as ortho-P. This study acquainted the audiences with the rare mechanism of chloridion-triggered HEDP degradation under electrochemical way, as well as offered a feasible technology for synchronous transformation of organically bound phosphorus to ortho-P and elimination from phosphonates.
Assuntos
Organofosfonatos , Poluentes Químicos da Água , Fosfatos , Compostos Férricos , Ácido Etidrônico , Oxirredução , Fósforo , Poluentes Químicos da Água/análise , Peróxido de Hidrogênio/químicaRESUMO
OBJECTIVES: Infections caused by azole-resistant Candida tropicalis strains are increasing in clinical settings. The reason for this epidemical change and the mechanisms of C. tropicalis azole resistance are not fully understood. METHODS: In this study, we performed biological and genomic analyses of 239 C. tropicalis strains, including 115 environmental and 124 human commensal isolates. RESULTS: Most (99.2%) of the isolates had a baseline diploid genome. The strains from both environmental and human niches exhibit similar abilities to survive under stressful conditions and produce secreted aspartic proteases. However, the human commensal isolates exhibited a stronger ability to filament than the environmental strains. We found that 19 environmental isolates (16.5%) and 24 human commensal isolates (19.4%) were resistant to fluconazole. Of the fluconazole-resistant strains, 37 isolates (86.0%) also exhibited cross-resistance to voriconazole. Whole-genome sequencing and phylogenetic analyses revealed that both environmental and commensal isolates were widely distributed in a number of genetic clusters, but the two populations exhibited a close genetic association. The majority of fluconazole-resistant isolates were clustered within a single clade (X). CONCLUSIONS: The combination of hotspot mutations (Y132F and S154F) and genomic expansion of ERG11, which encodes the azole target lanosterol 14-α-demethylase and represents a major target of azole drugs, was a major mechanism for the development of azole resistance. The isolates carrying both hotspot mutations and genomic expansion of ERG11 exhibited cross-resistance to fluconazole and voriconazole. Moreover, the azole-resistant isolates from both the environmental and human commensal niches showed similar genotypes.
Assuntos
Azóis , Candida tropicalis , Farmacorresistência Fúngica , Fluconazol , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis/farmacologia , Candida tropicalis/genética , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Genômica , Testes de Sensibilidade Microbiana , Mutação , Filogenia , Voriconazol/farmacologiaRESUMO
Candida vulturna belongs to the Candida haemulonii species complex and is phylogenetically related to C. auris. We report a C. vulturna outbreak among persons in Shanxi Province, China, during 2019-2022. Isolates were resistant to multiple antifungal drugs and exhibited enhanced adhesion and biofilm formation properties.
Assuntos
Candida , Candidíase , Candidíase/epidemiologia , Candidíase/microbiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , China/epidemiologia , Testes de Sensibilidade MicrobianaRESUMO
The aim of this study was to examine the effects of dietary protein and lipid levels on the growth performance and homeostasis of the intestinal flora in Paramisgurnus dabryanus. An 8-wk 3 × 3 two-factorial experiment was conducted to investigate the interaction between dietary crude protein (CP: 30%, 35%, 40%) and ether extract (EE: 6%, 10%, 14%) on the growth rate and the intestinal microflora of P. dabryanus. A total of 2,160 fish (5.19 ± 0.01 g) were randomly allotted to 36 aquariums each with 60 fish. Fish were fed the experimental diet twice daily. Results revealed that weight gain rate (WGR), specific growth rate (SGR), protein efficiency ratio and net protein utilization significantly increased when increasing protein levels from 30% to 40% (P < 0.05). Both WGR and SGR enhanced first but reduced thereafter with maximum value at 10% lipid level as dietary lipid increased from 6% to 14% (P < 0.05). Significant interactions between protein and lipid were found with feed conversion rate, lipid efficiency ratio and net lipid utilization (P < 0.05). At the phylum level, Proteobacteria and Actinobacteria were the dominant bacteria; at the genus level, Burkholderia-Caballeronia-Paraburkholderia was the dominant bacteria. Fish fed the diet containing 10% lipid had a higher abundance of Proteobacteria and unclassified_f_Eenterobacteriaceae than those fed the 14% lipid diet, and a higher abundance of Rhodobacter than those fed the 6% lipid diet (P < 0.05). Analysis of the predicted functions showed that metabolism in the intestine of fish in the CP40EE10 group was more active than that in CP30EE14 group. Polynomial regression analysis found that a diet containing 40.87% protein and 9.88% lipid can be considered optimal for P. dabryanus.
RESUMO
Background: Previous prediction models for postoperative stress urinary incontinence (SUI) cannot be applied to patients receiving transvaginal mesh (TVM) surgery and colpocleisis or those with preoperative subject urinary incontinence. This study aimed to develop and validate a new machine learning model and compare it to previous models. Methods: Female patients who underwent prolapse surgeries for stage 2-4 anterior or apical prolapse between January 1, 2015, and December 31, 2019, at Peking Union Medical College Hospital were enrolled. Prolapse surgeries included native tissue repair, LeFort/colpocleisis, sacrocolpopexy, and TVM surgery. The existing models to predict postoperative SUI were externally validated. Subsequently, the dataset was randomly divided into 2 sets in a 4:1 ratio. The larger group was used to construct and internally validate models of logistic regression, random forest, and extreme gradient boosting (XGBoost), which were then externally validated. The discrimination of the prediction models was evaluated using the area under the curve, while the calibration of the models was measured using the Spiegelhalter z test, mean absolute error (MSE), and calibration curves. Results: Overall, 555 patients were enrolled, and 116 experienced SUI 1 year postoperatively. Previous logistic models had poor performance, with areas under the curve of 0.544 and 0.586. In the model construction, the areas under the curve were 0.595, 0.842, and 0.714 for the logistic, random forest, and XGBoost models, respectively. However, only the XGBoost model exhibited good discrimination and calibration for both internal and external validations. Body mass index (BMI), C point of pelvic organ prolapse (POP) quantification stage, age, Aa point of POP quantification stage, and TVM surgery were the 5 most important predictors of postoperative SUI in the XGBoost model. Conclusions: Previous models had poor discrimination and calibration among a Chinese population. Hence, we developed and validated an XGBoost model, which performed well irrespective of the preoperative subjective urinary incontinence (preUI) and surgical methods. Further validation is still required.
RESUMO
The human fungal pathogen Candida albicans can switch stochastically and heritably between a "white" phase and an "opaque" phase. Opaque cells are the mating-competent form of the species, whereas white cells are thought to be essentially "sterile". Here, we report that glucose depletion, a common nutrient stress, enables C. albicans white cells to undergo efficient sexual mating. The relative expression levels of pheromone-sensing and mating-associated genes (including STE2/3, MFA1, MFα1, FIG1, FUS1, and CEK1/2) are increased under glucose depletion conditions, while expression of mating repressors TEC1 and DIG1 is decreased. Cph1 and Tec1, factors that act downstream of the pheromone MAPK pathway, play opposite roles in regulating white cell mating as TEC1 deletion or CPH1 overexpression promotes white cell mating. Moreover, inactivation of the Cph1 repressor Dig1 increases white cell mating ~4000 fold in glucose-depleted medium relative to that in the presence of glucose. Our findings reveal that the white-to-opaque epigenetic switch may not be a prerequisite for sexual mating in C. albicans in nature.
Assuntos
Candida albicans , Proteínas Fúngicas , Humanos , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Reprodução/fisiologia , Feromônios/genética , Feromônios/metabolismo , Epigênese Genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento/genéticaRESUMO
Submicron-sized quasi-spherical zinc oxide (ZnO) particles were prepared by wet ultrafine grinding in a stirred media mill under various conditions. The effects of parameters (i.e., solution type, acid or alkali concentration, solid content and grinding time) on the particle median size (d50), particle size distribution (PSD) and sphericity of ZnO particles was investigated. The results show that submicron-sized quasi-spherical particles (i.e., d50: 370 nm, uniformity coefficient (n) of 2.28 and sphericity of 0.91) can be obtained when the micron-sized ZnO particles are ground for 30 min in a CH3COOH solution at a concentration of 0.010 mol/L with 20 wt.% of solid content. The chemical dissolution of ZnO particles ground in the presence and absence of acetic acid is discussed. It is indicated that chemical dissolution accelerated due to the mechanochemical effects could reduce the particle size, obtain a narrower PSD and enhance the sphericity. In addition, the functions of selection and breakage were used to analyze the grinding mechanism of ZnO particles.
RESUMO
Sexual reproduction is prevalent in eukaryotic organisms and plays a critical role in the evolution of new traits and in the generation of genetic diversity. Environmental factors often have a direct impact on the occurrence and frequency of sexual reproduction in fungi. The regulatory effects of atmospheric relative humidity (RH) on sexual reproduction and pathogenesis in plant fungal pathogens and in soil fungi have been extensively investigated. However, the knowledge of how RH regulates the lifecycles of human fungal pathogens is limited. In this study, we report that low atmospheric RH promotes the development of mating projections and same-sex (homothallic) mating in the human fungal pathogen Candida albicans. Low RH causes water loss in C. albicans cells, which results in osmotic stress and the generation of intracellular reactive oxygen species (ROS) and trehalose. The water transporting aquaporin Aqy1, and the G-protein coupled receptor Gpr1 function as cell surface sensors of changes in atmospheric humidity. Perturbation of the trehalose metabolic pathway by inactivating trehalose synthase or trehalase promotes same-sex mating in C. albicans by increasing osmotic or ROS stresses, respectively. Intracellular trehalose and ROS signal the Hog1-osmotic and Hsf1-Hsp90 signaling pathways to regulate the mating response. We, therefore, propose that the cell surface sensors Aqy1 and Gpr1, intracellular trehalose and ROS, and the Hog1-osmotic and Hsf1-Hsp90 signaling pathways function coordinately to regulate sexual mating in response to low atmospheric RH conditions in C. albicans.
Assuntos
Candida albicans , Proteínas Fúngicas , Humanos , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Trealose/metabolismo , Umidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Reprodução/fisiologiaRESUMO
Candida auris is an emerging multidrug-resistant fungal pathogen and a new global threat to human health. A unique morphological feature of this fungus is its multicellular aggregating phenotype, which has been thought to be associated with defects in cell division. In this study, we report a new aggregating form of two clinical C. auris isolates with increased biofilm forming capacity due to enhanced adherence of adjacent cells and surfaces. Unlike the previously reported aggregating morphology, this new aggregating multicellular form of C. auris can become unicellular after treatment with proteinase K or trypsin. Genomic analysis demonstrated that amplification of the subtelomeric adhesin gene ALS4 is the reason behind the strain's enhanced adherence and biofilm forming capacities. Many clinical isolates of C. auris have variable copy numbers of ALS4, suggesting that this subtelomeric region exhibits instability. Global transcriptional profiling and quantitative real-time PCR assays indicated that genomic amplification of ALS4 results in a dramatic increase in overall levels of transcription. Compared to the previously characterized nonaggregative/yeast-form and aggregative-form strains of C. auris, this new Als4-mediated aggregative-form strain of C. auris displays several unique characteristics in terms of its biofilm formation, surface colonization, and virulence.
Assuntos
Antifúngicos , Candida , Humanos , Candida/genética , Candida auris , Biofilmes , Genômica , Testes de Sensibilidade MicrobianaRESUMO
Three sodium polyacrylate copolymers PD0x (Poly acrylic acid-co-sodium 4-vinylbenzenesulfonate or PD01; Poly acrylic acid-co-sodium 4-vinylbenzenesulfonate-co-hydroxyethyl methacrylate or PD02 and Poly methyl methacrylate-co-acrylic acid-co-sodium 4-vinylbenzenesulfonate-co-hydroxyethyl methacrylate or PD03) were synthesized as water-based dispersants for grinding red-brown pigment ZnFe1.2Cr0.8O4 particles prepared by the solid phase method (S-ZnF). The particle size distribution, viscosity of suspensions, and adsorption capacity of dispersants were explored by laser particle size analysis, viscometer, and thermogravimetry (TG), respectively. The application of 2 wt.% dispersant PD02 in the S-ZnF suspension ground for 90 min can deliver a finer product with the narrower particle size distribution. The added dispersant PD02 in the grinding process of the S-ZnF particles exhibits a suitable viscosity of the suspension and generates more hydrogen bonds on the S-ZnF particle surface. The sulfonic acid groups (SO3-) and carboxylic acid groups (-COO-) in the dispersant PD02 can also provide a strong charge density, which is favorable for the dispersion and grinding of the S-ZnF particles in the suspensions. Furthermore, the adsorption behavior of polymeric dispersant PD02 adsorbed on the S-ZnF particles surface was simulated and analyzed by adsorption thermodynamic models and adsorption kinetic models. It is indicated that the adsorption thermodynamic behavior of dispersant PD02 adsorbed on the S-ZnF particles surface follows the Langmuir model, and the adsorption process is endothermic and a random process with increased confusion during the grinding process. In addition, the adsorption kinetics of dispersant PD02 adsorbed on the S-ZnF particles surface are more in line with the pseudo-first-order kinetic models. Therefore, the adsorption process of dispersant PD02 on the S-ZnF particles surface can be considered as a single-surface adsorption process.