Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 25(1): 263, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956592

RESUMO

BACKGROUND: Aberrant activation of macrophages is associated with pathogenesis of acute lung injury (ALI). However, the potential pathogenesis has not been explored. OBJECTIVES: We aimed to identify whether histone deacetylase (HDAC) 10 is involved in lipopolysaccharide (LPS)-exposed ALI and reveal the underlying pathogenesis by which it promotes lung inflammation in LPS-exposed ALI via modifying P62 with deacetylation. METHODS: We constructed an ALI mice model stimulated with LPS to determine the positive effect of Hdac10 deficiency. Moreover, we cultured murine alveolar macrophage cell line (MH-S cells) and primary bone marrow-derived macrophages (BMDMs) to explore the pro-inflammatory activity and mechanism of HDAC10 after LPS challenge. RESULTS: HDAC10 expression was increased both in mice lung tissues and macrophage cell lines and promoted inflammatory cytokines production exposed to LPS. Hdac10 deficiency inhibited autophagy and inflammatory response after LPS stimulation. In vivo, Hdac10fl/fl-LysMCre mice considerably attenuated lung inflammation and inflammatory cytokines release exposed to LPS. Mechanistically, HDAC10 interacts with P62 and mediates P62 deacetylation at lysine 165 (K165), by which it promotes P62 expression and increases inflammatory cytokines production. Importantly, we identified that Salvianolic acid B (SAB), an HDAC10 inhibitor, reduces lung inflammatory response in LPS-stimulated ALI. CONCLUSION: These results uncover a previously unknown role for HDAC10 in regulating P62 deacetylation and aggravating lung inflammation in LPS-induced ALI, implicating that targeting HDAC10 is an effective therapy for LPS-exposed ALI.


Assuntos
Lesão Pulmonar Aguda , Histona Desacetilases , Lipopolissacarídeos , Lisina , Camundongos Endogâmicos C57BL , Animais , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Lipopolissacarídeos/toxicidade , Camundongos , Acetilação , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/deficiência , Lisina/metabolismo , Camundongos Knockout , Masculino , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Células Mieloides/metabolismo
2.
Vet Microbiol ; 294: 110129, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810364

RESUMO

OBJECTIVE: To conduct molecular prevalence and genetic polymorphism analysis of 24 Swine Farm associated C. difficile ST11 strains, in addition to other representative sequenced ST strains. METHODS: The collected C. difficile strains underwent whole genome sequencing and bioinformatic analysis using the illumina NovaSeq platform, SPAdes, Prokka, MOB-suite, and FastTree. Virulence and antibiotic resistance genes were identified through NCBI Pathogen Database. Cytotoxicity tests were conducted on HT-29 cells and Vero cells to verify the function of toxin A and toxin B. RESULTS: The most prevalent resistance genes in ST11 were found to be against ß-lactamases, aminoglycosides, and tetracycline. A C. difficile isolate (strain 27) with tcdA deletion and high antibiotic resistance genes was far apart from other swine farm associated ST11 isolates in the phylogenetic branch. The remarkable genetic similarity between animal and human C. difficile strains suggests potential transmission of ST11 strains between animals and humans. The plasmid replicon sequences repUS43 were identified in all ST11 strains except one variant (strain 27), and 91.67% (22/24) of these were assessed by MOB-typer as having mobilizable plasmids. CONCLUSION: Swine farm associated C. difficile ST11 carried fewer virulence genes than ST11 strains collected from NCBI database. It is critical to monitor the evolution of C. difficile strains to understand their changing characteristics, host-switching, and develop effective control and prevention strategies.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Fazendas , Filogenia , Doenças dos Suínos , Animais , Clostridioides difficile/genética , Clostridioides difficile/classificação , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Infecções por Clostridium/epidemiologia , Sequenciamento Completo do Genoma , Antibacterianos/farmacologia , Virulência/genética , Células Vero , Humanos , Chlorocebus aethiops , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Fatores de Virulência/genética
3.
Exp Ther Med ; 27(3): 98, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356671

RESUMO

With the rapid development of digital research in clinical orthopedics, the efficacy and safety of splint fixation can be better evaluated through biomechanical analysis based on a three-dimensional (3D) finite element model. It is essential to address the current gap in understanding the biomechanical implications of anatomical splint fixation for Colles fractures. By employing advanced 3D finite element analysis, the present study aimed to provide a comprehensive evaluation, offering valuable insights that can contribute to enhancing the effectiveness of anatomical splint fixation in the clinical management of Colles fractures. The 3D finite element models of the forearm and hand were constructed using Mimics 15.0 according to data from computed tomography of a patient with a Colles fracture. After the validity of the model was verified, the corresponding material properties of the models were adjusted to simulate a Colles fracture. Subsequently, the reduction functions, such as radial inclination and ulnar deviation, of the simulated fracture were completed and the mechanical changes of the tissues surrounding the fracture were calculated. Anatomical splints were then placed on the surfaces of the 3D finite element models of Colles fractures at various positions to analyze the changes in the stress cloud diagram, such as for the soft tissue and anatomical splints. In the present study, the constructed 3D finite element models were accurate and valid. The maximum stress of the anatomical splints and soft tissues was 2.346 and 0.106 MPa in pronation, 1.780 and 0.069 MPa in median rotation and 3.045 and 0.057 MPa in supination, respectively. Splint stress reached the highest level in supination and soft tissue stress achieved the highest level in pronation. The peak of splint stress occurred during supination, which contrasts to the peak of soft tissue stress observed in pronation, suggesting splint fixation median rotation can effectively avoid compression of the local soft tissue.

4.
Commun Biol ; 7(1): 51, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184739

RESUMO

Carbapenem-resistant Escherichia coli (CREC) poses a severe global public health risk. This study reveals the worldwide geographic spreading patterns and spatiotemporal distribution characteristics of resistance genes in 7918 CREC isolates belonging to 497 sequence types (ST) and originating from 75 countries. In the last decade, there has been a transition in the prevailing STs from highly virulent ST131 and ST38 to higher antibiotic-resistant ST410 and ST167. The rise of multi-drug resistant strains of CREC carrying plasmids with extended-spectrum beta-lactamase (ESBL) resistance genes could be attributed to three important instances of host-switching events. The spread of CREC was associated with the changing trends in blaNDM-5, blaKPC-2, and blaOXA-48, as well as the plasmids IncFI, IncFII, and IncI. There were intercontinental geographic transfers of major CREC strains. Various crucial transmission hubs and patterns have been identified for ST131 in the United Kingdom, Italy, the United States, and China, ST167 in India, France, Egypt, and the United States, and ST410 in Thailand, Israel, the United Kingdom, France, and the United States. This work is valuable in managing CREC infections and preventing CREC occurrence and transmission inside healthcare settings and among diverse hosts.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Escherichia coli/genética , Saúde Pública , Antibacterianos , Carbapenêmicos/farmacologia
5.
Nat Commun ; 14(1): 8525, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135684

RESUMO

Dysregulation of IL-17A is closely associated with airway inflammation and remodeling in severe asthma. However, the molecular mechanisms by which IL-17A is regulated remain unclear. Here we identify epithelial sirtuin 6 (SIRT6) as an epigenetic regulator that governs IL-17A pathogenicity in severe asthma. Mice with airway epithelial cell-specific deletion of Sirt6 are protected against allergen-induced airway inflammation and remodeling via inhibiting IL-17A-mediated inflammatory chemokines and mesenchymal reprogramming. Mechanistically, SIRT6 directly interacts with RORγt and mediates RORγt deacetylation at lysine 192 via its PPXY motifs. SIRT6 promotes RORγt recruitment to the IL-17A gene promoter and enhances its transcription. In severe asthma patients, high expression of SIRT6 positively correlates with airway remodeling and disease severity. SIRT6 inhibitor (OSS_128167) treatment significantly attenuates airway inflammation and remodeling in mice. Collectively, these results uncover a function for SIRT6 in regulating IL-17A pathogenicity in severe asthma, implicating SIRT6 as a potential therapeutic target for severe asthma.


Assuntos
Asma , Sirtuínas , Humanos , Animais , Camundongos , Interleucina-17/genética , Interleucina-17/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Virulência , Asma/metabolismo , Inflamação , Sirtuínas/genética , Remodelação das Vias Aéreas , Modelos Animais de Doenças
6.
Discov Oncol ; 14(1): 118, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392305

RESUMO

Refractory or relapsed (R/R) AML is the most challenging form of AML to treat. Due to frequent genetic mutations, therapy alternatives are limited. Here, we identified the role of ritanserin and its target DGKα in AML. Several AML cell lines and primary patient cells were treated with ritanserin and subjected to cell proliferation, apoptosis and gene analyses with CCK-8 assay, Annexin V/PI assay and Western blotting, respectively. We also evaluated the function of the ritanserin target diacylglycerol kinase alpha (DGKα) in AML by bioinformatics. In vitro experiments have revealed that ritanserin inhibits AML progression in a dose- and time-dependent manner, and it shows an anti-AML effect in xenograft mouse models. We further demonstrated that the expression of DGKα was elevated in AML and correlated with poor survival. Mechanistically, ritanserin negatively regulates SphK1 expression through PLD signaling, also inhibiting the Jak-Stat and MAPK signaling pathways via DGKα. These findings suggest that DGKα may be an available therapeutic target and provide effective preclinical evidence of ritanserin as a promising treatment for AML.

7.
Theranostics ; 13(11): 3568-3581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441601

RESUMO

Background: Perturbation of macrophage homeostasis is one of the key mechanisms of airway inflammation in asthma. However, the exact mechanisms remain poorly understood. Objectives: We sought to examine the role of histone deacetylase (HDAC) 10 as an epigenetic regulator that governs macrophage M2 program and promotes airway inflammation in asthma, and to elucidate the underlying mechanisms. Methods: Peripheral blood and airway biopsies were obtained from healthy individuals and asthmatic patients. Asthma was induced by exposure to allergen in mice with myeloid-specific deletion of Hdac10 (Hdac10fl/fl-LysMCre) mice. HDAC10 inhibitor Salvianolic acid B (SAB), STAT3 selective agonist Colivelin, and the specific PI3K/Akt activator 1,3-Dicaffeoylquinic acid (DA) were also used in asthmatic mice. For cell studies, THP1 cells, primary mouse bone marrow derived macrophage (BMDMs) were used and related signaling pathways was investigated. Results: HDAC10 expression was highly expressed by macrophages and promoted M2 macrophage activation and airway inflammation in asthmatic patients and mice. Hdac10fl/fl-LysMCre mice were protected from airway inflammation in experimental asthma model. Hdac10 deficiency significantly attenuated STAT3 expression and decreased M2 macrophage polarization following allergen exposure. Mechanistically, HDAC10 directly binds STAT3 for deacetylation in macrophages, by which it promotes STAT3 expression and activates the macrophage M2 program. Importantly, we identified SAB as a HDAC10 inhibitor that had protective effects against airway inflammation in mice. Conclusions: Our results revealed that HDAC10-STAT3 interaction governs macrophage polarization to promote airway inflammation in asthma, implicating HDAC10 as a therapeutic target.


Assuntos
Asma , Fosfatidilinositol 3-Quinases , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Alérgenos , Ativação de Macrófagos
8.
Int J Chron Obstruct Pulmon Dis ; 18: 1135-1144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323542

RESUMO

Purpose: Particulate matter (PM2.5) is a common risk factor for airway inflammation. Alveolar macrophages play a critical role in airway inflammation. Sirtuin 6 (SIRT6) is a class Ill histone deacetylase that exerts an anti-inflammatory effect in airway diseases. However, the role of SIRT6 on PM2.5-induced airway inflammation in macrophages remains unclear. We aimed to determine whether SIRT6 protects against PM2.5-induced airway inflammation in macrophages. Methods: The effect of SIRT6 on PM2.5-induced airway inflammation was assessed by using THP1 cells or bone marrow-derived macrophages (BMDMs) exposed to PM2.5 in vitro and myeloid cell-specific SIRT6 conditional knockout mice (Sirt6fl/fl-LysMCre) in vivo. Results: PM2.5 increased SIRT6 expression in THP1 cells, but SIRT6 gene silencing decreased PM2.5 induced inflammatory cytokines in THP1 cells. Moreover, the expression of SIRT6 and inflammatory cytokines was also decreased in BMDMs with myeloid-specific deletion of SIRT6 after stimulation of PM2.5. In vivo, Sirt6fl/fl-LysMCre mice substantially decreased airway inflammation in response to PM2.5 exposure. Conclusion: Our results revealed that SIRT6 promotes the PM2.5-induced airway inflammation in macrophages and indicated that inhibition of SIRT6 in macrophages may represent therapeutic strategy for airway disorders induced by airborne particulate pollution.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Sirtuínas , Camundongos , Animais , Material Particulado/toxicidade , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/prevenção & controle , Citocinas/metabolismo , Sirtuínas/genética
9.
Int J Food Microbiol ; 401: 110273, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37295267

RESUMO

Staphylococcus aureus (S. aureus) is a major cause of foodborne infections and its persistence in raw milk is a multifaceted phenomenon that poses a considerable public health challenge. Our study investigated the prevalence, virulence genes, antibiotic resistance, and genetic characterization of S. aureus in raw milk in six Shanghai districts from 2013 to 2022. At 18 dairy farms, a total of 704 S. aureus strains were isolated from 1799 samples tested for drug sensitivity. The highest rates of antibiotic resistance were ampicillin (96.7 %), sulfamethoxazole (65 %), and erythromycin (21.6 %). Between 2018 and 2022, there was a significant decrease in the resistance rates of ceftiofur, ofloxacin, tilmicosin, erythromycin, clindamycin, amoxicillin-clavulanic acid, and sulfamethoxazole in comparison to the period from 2013 to 2017. There were 205 S. aureus strains chosen for whole genome sequencing (WGS), with no more than 2 strains of the same resistance phenotype from each farm per year. The prevalence of mecA-positive strains was 14.15 %, while other antibiotic resistance-associated genes were observed as follows: blaI (70.21 %), lnu(B) (5.85 %), lsa(E) (5.75 %), fexA (6.83 %), erm(C) (4.39 %), tet(L) (9.27 %), and dfrG (5.85 %). Isolates harboring the immune evasion cluster (IEC) genes (scn, chp, and sak) were predominantly categorized as sequence types (STs) 7, 188, 15, 59, and 398. The predominant cluster complexes were CC97, CC1, CC398, and CC1651. In 2017-2022, there was a transition in CC1 from the highly antibiotic-resistant ST9 strain that emerged between 2013 and 2018 to the low-resistant but highly virulent ST1 strain. Retrospective phylogenetic analysis elucidated the evolutionary history of the isolates and demonstrated that the human-animal host transition of S. aureus was linked to the genesis of MRSA CC398. The implementation of extended surveillance will aid in the development of innovative strategies to avoid the transmission of S. aureus along the dairy food chain and the occurrence of public health events.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus aureus/genética , Virulência/genética , Leite , Filogenia , Estudos Retrospectivos , China , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Antibacterianos/farmacologia , Eritromicina , Resistência Microbiana a Medicamentos , Sulfametoxazol , Variação Genética , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana
10.
Front Genet ; 14: 1084552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968605

RESUMO

Objectives: Some ceRNA associated with lncRNA have been considered as possible diagnostic and therapeutic biomarkers for obstructive sleep apnea (OSA). We intend to identify the potential hub genes for the development of OSA, which will provide a foundation for the study of the molecular mechanism underlying OSA and for the diagnosis and treatment of OSA. Methods: We collected plasma samples from OSA patients and healthy controls for the detection of ceRNA using a chip. Based on the differential expression of lncRNA, we identified the target genes of miRNA that bind to lncRNAs. We then constructed lncRNA-related ceRNA networks, performed functional enrichment analysis and protein-protein interaction analysis, and performed internal and external validation of the expression levels of stable hub genes. Then, we conducted LASSO regression analysis on the stable hub genes, selected relatively significant genes to construct a simple and easy-to-use nomogram, validated the nomogram, and constructed the core ceRNA sub-network of key genes. Results: We successfully identified 282 DElncRNAs and 380 DEmRNAs through differential analysis, and we constructed an OSA-related ceRNA network consisting of 292 miRNA-lncRNAs and 41 miRNA-mRNAs. Through PPI and hub gene selection, we obtained 7 additional robust hub genes, CCND2, WT1, E2F2, IRF1, BAZ2A, LAMC1, and DAB2. Using LASSO regression analysis, we created a nomogram with four predictors (CCND2, WT1, E2F2, and IRF1), and its area under the curve (AUC) is 1. Finally, we constructed a core ceRNA sub-network composed of 74 miRNA-lncRNA and 7 miRNA-mRNA nodes. Conclusion: Our study provides a new foundation for elucidating the molecular mechanism of lncRNA in OSA and for diagnosing and treating OSA.

11.
BMC Psychiatry ; 23(1): 145, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890488

RESUMO

BACKGROUND: Based on its objective characteristics, laboratory markers have always been the research direction of clinical diagnosis and assessment of mental disorders including Alzheimer's disease. METHODS: MTT Colorimetric Assay, ELISA, and quantitative PCR were used to investigate the responsiveness of peripheral blood mononuclear cells (PBMCs) to mitogen Lipopolysaccharides (LPS) and Phytohemagglutinin (PHA), PBMCs genomic methylation and hydroxymethylation levels, nuclear DNA and mitochondrial DNA damage, respiratory chain enzyme activities, and circulating cell-free mitochondrial DNA levels were detected in 90 patients with Alzheimer's disease. RESULTS: In the Alzheimer's disease group, LPS stimulated PBMCs viability, TNF-α secretion, PHA stimulated IL-10 secretion, genomic DNA methylation levels, circulating cell-free mitochondrial DNA copies, citrate synthase activity were reduced compared to the control; while the LPS stimulated PBMCs IL-1α secretion, PHA stimulated IL-1α and IFN-γ secretion, plasma IL-6 and TNF-α, mitochondrial DNA damages were increased compared to the control. CONCLUSIONS: The reactivity of peripheral blood mononuclear cells to mitogens, mitochondrial DNA integrity characteristics, and cell-free mitochondrial DNA copies may be used as candidate laboratory biomarkers to help clinical management of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Mitógenos , Humanos , Mitógenos/farmacologia , Lipopolissacarídeos , Leucócitos Mononucleares , Fator de Necrose Tumoral alfa , Citocinas , DNA Mitocondrial , Doença de Alzheimer/diagnóstico , Fito-Hemaglutininas/farmacologia
12.
Front Surg ; 9: 875040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784942

RESUMO

Background: Femoral neck fracture (FNF) is a commonly encountered injury in orthopedic practice, and many studies have been conducted in this field. However, no bibliometric studies regarding the global research trend concerning FNF have been performed. This study aims to analyze the knowledge framework, research hotspots, and theme trends in the field of FNF research. Methods: The scientific outputs related to FNF from 1994 to 2021 were retrieved from the Web of Science Core Collection. Three bibliometric tools were used for this study. The main analyses include publication and citation counts, contributions of countries, institutions, authors, funding agencies and journals, and clustering of keywords. Results: In total, 3,553 articles were identified. The annual publication counts of FNF showed an ascending tendency as a whole. The United States has the most prominent contributions, with the most number of publications and the highest H-index. Karolinska Institutet devoted the most in this domain. Professors Bhandari M, Schemitsch EH, Frihagen F, Parker MJ, and Rogmark C were the core authors in this field. The most productive journal was Injury International Journal of the Care of the Injured. Keywords were divided into four clusters: epidemiology and mortality, fracture prevention, internal-fixation and risk factors, and hip replacement. A trend of balanced and diversified development existed in these clusters. Keywords with the ongoing bursts, including "outcome," "reoperation," "complication," "revision," "displaced intracapsular," "fracture," and "adult," are considered as the research hotspots in the future and deserve more attention. Conclusions: The management of FNF in young patients is drawing more attention from orthopedic surgeons, and it is expected that these research topics may continue to be the research hotspots and focus in the near future.

13.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36678513

RESUMO

Transformed follicular lymphoma (t-FL), for which there is no efficient treatment strategy, has a rapid progression, treatment resistance, and poor prognosis, which are the main reasons for FL treatment failure. In this study, we identified a promising therapeutic approach with chiauranib, a novel orally developed multitarget inhibitor targeting VEGFR/Aurora B/CSF-1R. We first determined the cytotoxicity of chiauranib in t-FL cell lines through CCK-8, EdU staining, flow cytometry, and transwell assays. We also determined the killing effect of chiauranib in a xenograft model. More importantly, we identified the underlying mechanism of chiauranib in t-FL tumorigenesis by immunofluorescence and Western blotting. Treatment with chiauranib significantly inhibited cell growth and migration, promoted apoptosis, induced cell cycle arrest in G2/M phase, and resulted in significant killing in vivo. Mechanistically, chiauranib suppresses the phosphorylation level of VEGFR2, which has an anti-t-FL effect by inhibiting the downstream MEK/ERK/STAT3 signaling cascade. In conclusion, chiauranib may be a potential therapy to treat t-FL, since it inhibits tumor growth and migration and induces apoptosis by altering the VEGFR2/ERK/STAT3 signaling pathway.

14.
BMC Pulm Med ; 21(1): 347, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34742261

RESUMO

BACKGROUND: We have reported that heparin-binding epidermal growth factor (HB-EGF) is increased in patients with chronic obstructive pulmonary disease (COPD) and associated with collagen deposition, but the mechanisms remain unclear. In the present study, we aimed to investigated the inflammatory cytokines secreted by bronchial epithelial cells following exposure to HB-EGF that promoted proliferation and migration of human lung fibroblast. METHODS: HB-EGF-induced inflammatory cytokines were assayed in two airway epithelial cells (primary human bronchial epithelial cells [HBECs] and BEAS-2B cells). Moreover, the culture supernatants derived from HB-EGF-treated HBECs and BEAS-2B cells were added to human primary lung fibroblasts. The effect of culture supernatants on proliferation and migration of fibroblasts was assessed. RESULTS: IL-8 expression was significantly increased in bronchial epithelial cells treated with HB-EGF, which was at least partially dependent on NF-kB pathways activation. HB-EGF-induced IL-8 was found to further promote lung fibroblasts proliferation and migration, and the effects were attenuated after neutralizing IL-8. CONCLUSIONS: These findings suggest that HB-EGF may be involved in the pathology of airway fibrosis by induction of IL-8 from airway epithelium, subsequently causing lung fibroblasts proliferation and migration. Thus, inhibition of HBEGF and/or IL-8 production could prevent the development of airway fibrosis by modulating fibroblast activation.


Assuntos
Epitélio/metabolismo , Fibroblastos/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Interleucina-8/metabolismo , Pulmão/metabolismo , Técnicas de Cultura de Células , Proliferação de Células , Fibroblastos/patologia , Fibrose/patologia , Humanos , Pulmão/fisiopatologia
15.
Int Immunopharmacol ; 97: 107685, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33951560

RESUMO

BACKGROUND: The 2019 Coronavirus (COVID-19) pandemic poses a huge threat internationally; however, the role of the host immune system in the pathogenesis of COVID-19 is not well understood. METHODS: Cytokine and chemokine levels and characterisation of immune cell subsets from 20 COVID-19 cases after hospital admission (17 critically ill and 3 severe patients) and 16 convalescent patients were determined using a multiplex immunoassay and flow cytometry, respectively. RESULTS: IP-10, MCP-1, MIG, IL-6, and IL-10 levels were significantly higher in acute severe/critically ill patients with COVID-19, whereas were normal in patients who had reached convalescence. CD8 T cells in severe and critically ill COVID-19 patients expressed high levels of cytotoxic granules (granzyme B and perforin)and was hyperactivated as evidenced by the high proportions of CD38. Furthermore, the cytotoxic potential of natural killer (NK) cells, and the frequencies of myeloid dendritic cells and plasmacytoid dendritic cells was reduced in patients with severe and critical COVID-19; however, these dysregulations were found to be restored in convalescent phases. CONCLUSION: Thus, elicitation of the hyperactive cytokine-mediated inflammatory response, dysregulation of CD8 T and NK cells, and deficiency of host myeloid and plasmacytoid DCs, may contribute to COVID-19 pathogenesis and provide insights into potential therapeutic targets and strategies.


Assuntos
COVID-19/sangue , COVID-19/imunologia , Convalescença , Inflamação/etiologia , ADP-Ribosil Ciclase 1/sangue , Doença Aguda , Adulto , Idoso , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/enzimologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CCL2/sangue , Quimiocina CXCL10/sangue , Quimiocina CXCL9/sangue , Estado Terminal , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/imunologia , Células Dendríticas/imunologia , Feminino , Granzimas/metabolismo , Humanos , Interleucina-10/sangue , Interleucina-6/sangue , Células Matadoras Naturais/enzimologia , Células Matadoras Naturais/imunologia , Masculino , Glicoproteínas de Membrana/sangue , Pessoa de Meia-Idade , Perforina/metabolismo
16.
J Orthop Translat ; 28: 28-38, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33717979

RESUMO

BACKGROUND: Mesenchymal Stem Cells (MSCs) therapy has become a new coming focus of clinical research in regenerative medicine. However, only a small number of implanted MSCs could successfully reach the injured areas. The previous studies have shown that fracture healing time is inversely proportional to concentration of MSCs in injured tissue. METHODS: The migration and osteogenesis of MSCs were assessed by transwell assay and Alizarin Red S staining. Levels of gene and protein expression were checked by qPCR and Western Blot. On the other hand, the enhanced migration ability of MSCs induced by Cyasterone was retarded by CXCR4 siRNA. In addition, the rat model of femoral fracture was established to evaluate the effect of Cyasterone on fracture healing. What's more, we also checked the effect of Cyasterone on mobilisation of MSCs in vivo. RESULTS: The results showed that Cyasteron increased the number of MSCs in peripheral blood. The concentrations of SDF-1α in serum at different time points were determined by ELISA assay. Micro-CT and histological analysis were used to evaluate the fractured femurs.Our results showed that Cyasterone could promote the migration and osteogenesis capacities of MSCs. The fractured femurs healed faster with treatment of Cyasterone. Meanwhile, Cyasterone could significantly increase the level of SDF-1α in rats with femur fracture. CONCLUSION: Cyasterone could promote migration and osteogenesis of MSCs, and most importantly, it could accelerate bone fracture healing.Translational Potential statement: These findings provide evidence that Cyasterone could be used as a therapeutic reagent for MSCs mobilisation and osteogenesis. What's more, it could acclerate fracture healing.

17.
Zhong Yao Cai ; 37(6): 935-9, 2014 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-25470954

RESUMO

OBJECTIVE: To study the allelopathy effects of aquatic extracts from rhizospheric soil on the rooting and growth of stem cutting in Pogostemon cablin, and to reveal its mechanism initially. METHODS: The changes of rhizogenesis characteristics and physic-biochemical during cutting seedlings were observed when using different concentration of aquatic extracts from rhizospheric soil. RESULTS: Aquatic extracts from rhizospheric soil had significant inhibitory effects on rooting rate, root number, root length, root activity, growth rate of cutting with increasing concentrations of tissue extracts; The chlorophyll content of cutting seedlings were decreased, but content of MDA were increased, and activities of POD, PPO and IAAO in cutting seedlings were affected. CONCLUSION: Aquatic extracts from rhizospheric soil of Pogostemon cablin have varying degrees of inhibitory effects on the normal rooting and growth of stem cuttings.


Assuntos
Alelopatia/efeitos dos fármacos , Lamiaceae/química , Extratos Vegetais/farmacologia , Solo/química , Clorofila , Raízes de Plantas , Caules de Planta , Plântula
18.
Int J Antimicrob Agents ; 39(6): 496-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22521524

RESUMO

Antimicrobial peptides (AMPs) are one of several potential antibacterial agents in the current era of antibiotics facing severe challenges. In this study, the bactericidal activity and stability of two eukaryotic AMPs were determined. Both AMPs showed specific antibacterial activity in a HEK293T cell model infected with meticillin-resistant Staphylococcus aureus. The recombinant eukaryotic AMP pVAX1/hBD3-CBD showed better bactericidal activity and stability than the eukaryotic AMP pVAX1/hBD3. These results illustrate that this peptide, designed and used with eukaryotic expression and recombinant methods, should be studied and applied in further AMP research and trials.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Células Eucarióticas/metabolismo , Rim/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Células HEK293 , Humanos , Rim/citologia , Testes de Sensibilidade Microbiana/métodos , Proteínas Recombinantes/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...