Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 937: 173538, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38802009

RESUMO

Many researchers have evaluated the fishery carbon sink potential of bivalve aquaculture, with most studies focusing on the Life Cycle Assessment (LCA) of individual bivalves, and there is currently no consensus on whether bivalves are carbon sinks or carbon sources. It is worth noting that most studies have not considered the impact of bivalve aquaculture on ecosystems when evaluating its carbon sink potential. In this context, based on existing literature, this article aims to comprehensively review the effects of bivalve aquaculture on carbon storage in the water column and sediment of aquaculture areas. In general, our findings revealed that moderate and low stocking densities of bivalve aquaculture do not lead to significant changes in the abundance of phytoplankton, but it does indeed alter the phytoplankton community structure from dominated by huge diatom with lower carbon densities to dominated by small phytoplankton with higher carbon densities. Therefore, bivalve aquaculture may increase the total carbon storage in the water column. In addition, bivalve aquaculture also increases the sedimentation rate of suspended particles, increasing the rate of carbon burial, especially in low-energy environment and shallow water areas. The findings of this article fill the knowledge gap of fishery carbon sink in bivalve aquaculture from an ecosystem perspective.


Assuntos
Aquicultura , Bivalves , Sequestro de Carbono , Carbono , Sedimentos Geológicos , Animais , Bivalves/metabolismo , Sedimentos Geológicos/química , Carbono/análise , Ecossistema , Monitoramento Ambiental , Fitoplâncton
2.
Sci Total Environ ; 914: 169892, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211869

RESUMO

Global human population has increased dramatically over the past 50 years. As a result, marine fisheries and finfish aquaculture have become increasingly unsustainable, driving bivalve aquaculture to become an important food industry for the production of marine animal protein to support the growing market demand for animal protein. It is projected that the rate of bivalve aquaculture expansion will be greatly accelerated in the near future as the human population continues to increase. Although it is generally believed that unfed bivalve aquaculture has less impact on the environment than finfish aquaculture, the rapid expansion of bivalve aquaculture has raised concerns about its potential negative impact, especially on plankton and benthic community. Therefore, there is an urgent need to update the potential effects of bivalve aquaculture on plankton and benthic community. This article reviews the present state of knowledge on environmental issues related to bivalve aquaculture, and discusses potential mitigation measures for the environmental impacts induced by expansion of bivalve aquaculture. This review provides guidance for scientists and farm managers to clarify the current state of research and identify priority research needs for future bivalve aquaculture research. Therefore, specific management strategies can be formulated for the sustainable development and expansion of bivalve aquaculture.


Assuntos
Bivalves , Plâncton , Animais , Humanos , Aquicultura , Pesqueiros , Peixes
3.
Crit Rev Food Sci Nutr ; : 1-8, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294719

RESUMO

Bivalves are nutritious animal protein source for humans, rich in high quality proteins, lipids, and carbohydrates. Many studies have shown that ocean warming has detrimental effects on the nutritional quality of bivalves. Although a number of studies are available on the effect of ocean warming on the nutritional value of bivalves, this information is not well organized. In this context, the current study provides a critical review of the effects of ocean warming on the nutritional quality of commercially important edible marine bivalves. In general, ocean warming has caused a reduction in the total lipid and carbohydrate content of bivalves, especially those bivalves inhabiting temperate regions. As for protein, there is no general trend in the effects of ocean warming on the protein reserves of bivalves. In addition, the specific effects of elevated temperature on the macro-nutrients of bivalves highly depend on the tissues, sex and developmental stages of bivalves, as well as seasonal factors. This review not only fills in the knowledge gap regarding the effects of elevated temperature on the macro-nutrients of commercially important marine bivalves but also provides guidance for the establishment of bivalve aquaculture and fisheries management plans to mitigate the impact of climate change.

4.
Food Chem X ; 19: 100856, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780264

RESUMO

Coronary heart disease (CHD) is one of the leading causes of death worldwide. Seafood, especially fish and shellfish, is a healthy food that reduces the risk of CHD. In many regions, seafood is consumed cooked to eliminate potentially pathogenic microorganisms. Although there have been many reports of culinary preparations causing changes in the fatty acid profile of fish and shellfish, this information has not been well organized, and most of it is not associated to CHD. Therefore, this study was conducted to study the effect of culinary treatments of seafood on lipid nutritional quality in relation to promotion/prevention of CHD. In this study, fatty acid profiles of fish and shellfish prepared with different culinary preparations were obtained from published literature. Lipid nutritional quality indices related to promoting/preventing CHD were calculated and analyzed to reveal the effects of culinary treatment on the lipid nutritional quality of fish and shellfish in promoting/preventing of CHD. The information in this article is very useful and can fill the knowledge gap of the effects of culinary preparation on the lipid nutritional quality of fish and shellfish. Such information is very useful for guiding consumers to choose better ways to cook fish and shellfish to reduce the risk of CHD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...