Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174564, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972401

RESUMO

The bacterial community in sediment serves as an important indicator for assessing the environmental health of river ecosystems. However, the response of bacterial community structure and function in river basin sediment to different land use/cover changes has not been widely studied. To characterize changes in the structure, composition, and function of bacterial communities under different types of land use/cover, we studied the bacterial communities and physicochemical properties of the surface sediments of rivers. Surface sediment in cropland and built-up areas was moderately polluted with cadmium and had high nitrogen and phosphorus levels, which disrupted the stability of bacterial communities. Significant differences in the α-diversity of bacterial communities were observed among different types of land use/cover. Bacterial α-diversity and energy sources were greater in woodlands than in cropland and built-up areas. The functional patterns of bacterial communities were shown that phosphorus levels and abundances of pathogenic bacteria and parasites were higher in cropland than in the other land use/cover types; Urban activities have resulted in the loss of the denitrification function and the accumulation of nitrogen in built-up areas, and bacteria in forested and agricultural areas play an important role in nitrogen degradation. Differences in heavy metal and nutrient inputs driven by land use/cover result in variation in the composition, structure, and function of bacterial communities.

2.
Environ Int ; 187: 108699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678937

RESUMO

BACKGROUND: Despite growing attention from researchers and governments, challenges persist in comprehensively assessing urban sound quality by integrating both quietness and naturalness aspects. GOALS: This study aimed to develop an innovative soundscape quality index that concurrently evaluates quietness and naturalness in urban soundscapes. Our objectives included conducting urban soundscape quality mapping, analyzing influential mechanisms, and identifying priority zones for sound environment management. APPROACHES: We collected sound pressure level (SPL) and raw audio data, from which we computed a normalized difference soundscape index (NDSI). With a dataset comprising 28 explanatory variables encompassing land use, built environment, vegetation characteristics, and temporal factors, we employed the random forest (RF) model to predict 10 indicators, including eight SPL-related indices, NDSI, and the QNS (quietness and naturalness soundscape) index. Crucially, we utilized SHAP (SHapley Additive exPlanations) values to interpret the RF model. FINDINGS: Spatial variations in quietness and naturalness were evident, closely associated with road networks and vegetation, respectively, with discernible temporal variations. The top three variables influencing QNS were distance to major roads, normalized difference vegetation index (NDVI), and proportion of tree coverage. Moreover, interaction effects highlighted dual negative or synergistic promoting effects on QNS from factors such as road width, human disturbance, vegetation configurations, and land cover. Notably, these mechanisms were successfully applied to six typical tourist attractions in Xiamen city, where five types of management zones were mapped based on priority considerations of population density and soundscape quality. Interestingly, natural soundscape reserves were highly correlated with city parks, high-risk zones predominantly overlapped with road networks, and potential zones comprised inner communities between streets. SIGNIFICANCE: The framework demonstrated effectiveness in mapping, exploring mechanisms, and guiding management strategies for the urban sound environment.


Assuntos
Cidades , Ruído , Humanos , Ambiente Construído , Monitoramento Ambiental/métodos , Som , Conservação dos Recursos Naturais/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-36498434

RESUMO

The runoff of the Jiulong River (JLR) is a key parameter that affects the estimation of pollutant flux into Xiamen Bay (XMB). The precise runoff estimation of the JLR can be used to determine the accuracy of the pollutant flux estimation flowing into XMB. In this study, to analyze the hydrological dynamic characteristics and identify the correlation between fixed-site real-time ocean current observations and cross-sectional navigation flow observations, we conducted six navigation observations on two cross-sections of the JLR estuary during the spring tide and neap tide in the normal season, wet season, and dry season in 2020. Simultaneously, we measured hydrological observation data by a fixed-site buoy located in the JLR estuary and collected runoff data that were measured upstream of the JLR. The results showed that the average correlation coefficient between the average velocity of the fixed-point buoy and average velocity of the section was more than 0.90, higher than expected, the minimum average deviation was 4%, and the minimum sample standard error was 5.7%, which was a good result. In this study, we constructed a model for estimating the runoff of the JLR into the sea. The findings demonstrated that Acoustic Doppler Current Profiler (ADCP) online monitoring data were useful to estimate runoff of the JLR with high accuracy, could promote the accuracy of estimated pollutant flux of the JLR's discharge into XMB, and could provide more scientific and reliable basic data for future load flux estimation research.


Assuntos
Monitoramento Ambiental , Rios , Monitoramento Ambiental/métodos , Estudos Transversais , Estuários , Acústica , China
4.
J Environ Manage ; 92(6): 1663-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21354693

RESUMO

Measurements were conducted during 2004-2005 and 2009-2010 to characterize atmospheric nitrogen (N) deposition to the Jiulong River Estuary - Xiamen Bay area in southeast China. Isotopic analysis and long-term data (1990-2009) for inorganic N extracted from the national acid deposition dataset were used to determine the dominant source of atmospheric nitrate and N component dynamics. The results showed that the mean dissolved total N concentration in rain water for the three coastal area sites was 2.71 ± 1.58 mg N L(-1) (n = 141) in 2004. The mean dissolved inorganic N at the Xiamen site was 1.62 ± 1.19 mg N L(-1) (n = 46) in 2004-2005 and 1.56 ± 1.39 mg N L(-1) (n = 36) in 2009-2010, although the difference is not significant, nitrate turnover dominates the N component in the latter period. Total deposition flux over Xiamen was 30 kg N ha(-1) yr(-1), of which dry and wet deposition contributed 16% and 84%, respectively. Nitrate in wet deposition with low isotopic value (between -3.05 and -7.48‰) was likely to have mostly originated from combustion NO(x) from vehicle exhausts. The inorganic N in acid deposition exhibited a significant increase (mainly for nitrate) since the mid-1990s, which is consistent with the increased gaseous concentrations of NO(x) and expanding number of automobiles in the coastal city (Xiamen). The time series of nitrate anions and ammonium cations as well as pH values during the period 1990-2009 reflected an increasing trend of N emission with potential implication for N-induced acidification.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental/estatística & dados numéricos , Nitrogênio/análise , China , Monitoramento Ambiental/métodos , Concentração de Íons de Hidrogênio , Íons/análise , Isótopos de Nitrogênio/análise , Chuva/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...