RESUMO
Ultraviolet (UV) B-induced damage in human epidermal keratinocytes (HEKs) initiates photocarcinogenesis. However, how diabetes influences photocarcinogenesis is not well understood. To investigate the impact of high-glucose environments on responses to UVB, we cultured HEKs in normal-glucose (NG) or high-glucose (HG) conditions (G6 and G26), followed by UVB irradiation at 25 mJ/cm2 (G6UVB and G26UVB). We performed next-generation sequencing and analyzed HEKs' expression profiles bioinformatically to identify candidate genes and cellular responses involved. We found UVB induced consistent responses in both NG- and HG-cultivated HEKs, but it also triggered certain distinct processes and pathways specifically in the HG groups. The 459 differentially expressed (DE) genes in the HG groups revealed their roles in chromatin remodeling, nucleosome assembly, and interferon signaling activation. Moreover, the 29 DE genes identified in G26UVB/G6UVB comparison, including the potent tumor suppressor gene TFPI2, were considered key genes contributing to HEKs' altered response to UVB in HG environments. UVB irradiation induced significantly higher TFPI2 expression in HG-cultivated HEKs than their NG-cultivated counterpart. Finally, HG-cultivation significantly increased oxidative stress, cyclobutane pyrimidine dimer formation, and apoptosis, while reducing HEKs' viability after UVB irradiation. These changes under HG conditions probably mediate cell fate toward death and tumor regression. Overall, our findings provide evidence and associated molecular basis on how HG conditions reduce keratinocytes' photocarcinogenic potential following UVB exposure.
Assuntos
Glucose , Queratinócitos , Raios Ultravioleta , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Humanos , Raios Ultravioleta/efeitos adversos , Glucose/metabolismo , Estresse Oxidativo , Células Cultivadas , Pele/metabolismo , Pele/efeitos da radiação , Pele/patologia , Epiderme/metabolismo , Epiderme/efeitos da radiação , Epiderme/patologia , Diabetes Mellitus/metabolismo , Carcinogênese/genética , Carcinogênese/efeitos da radiação , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismoRESUMO
Crop wild relatives (CWR) provide a valuable resource for improving crops. They possess desirable traits that confer resilience to various environmental stresses. To fully utilize crop wild relatives in breeding and conservation programs, it is important to understand the genetic basis of their adaptation. Landscape genomics associates environments with genomic variation and allows for examining the genetic basis of adaptation. Our study examined the differences in allele frequency of 15,416 single nucleotide polymorphisms (SNPs) generated through genotyping by sequencing approach among 153 accessions of 15 wild eggplant relatives and two cultivated species from Africa, the principal hotspot of these wild relatives. We also explored the correlation between these variations and the bioclimatic and soil conditions at their collection sites, providing a comprehensive understanding of the genetic signals of environmental adaptation in African wild eggplant. Redundancy analysis (RDA) results showed that the environmental variation explained 6% while the geographical distances among the collection sites explained 15% of the genomic variation in the eggplant wild relative populations when controlling for population structure. Our findings indicate that even though environmental factors are not the main driver of selection in eggplant wild relatives, it is influential in shaping the genomic variation over time. The selected environmental variables and candidate SNPs effectively revealed grouping patterns according to the environmental characteristics of sampling sites. Using four genotype-environment association methods, we detected 396 candidate SNPs (2.5% of the initial SNPs) associated with eight environmental factors. Some of these SNPs signal genes involved in pathways that help adapt to environmental stresses such as drought, heat, cold, salinity, pests, and diseases. These candidate SNPs will be useful for marker-assisted improvement and characterizing the germplasm of this crop for developing climate-resilient eggplant varieties. The study provides a model for applying landscape genomics to other crops' wild relatives.
RESUMO
Several studies have reported an association between dipeptidyl peptidase 4 inhibitor (DPP4i), a commonly prescribed second-line oral antihyperglycemic drug, and bullous pemphigoid (BP). However, the benefits of DPP4i withdrawal in patients with BP remain controversial. This study primarily aimed to evaluate the clinical severity of DPP4i-associated BP by comparing it to those without Type 2 diabetes mellitus (DM). The secondary objective was to determine whether cessation of DPP4i is necessary for all patients with BP. This retrospective case-control study included 83 patients. The participants were divided into three groups according to their diabetic status and the status of discontinuance or continuance of DPP4i. The 12-month follow-up of the monthly dosage of systemic steroids per body weight (kg) and the percentage of systemic steroid off-therapy in these participants were recorded since the diagnosis of BP. Compared to patients with BP without DM, the 1st, 3rd, and 12th systemic prednisolone doses were significantly lower in the DPP4i group (p = 0.01684, 0.02559, and 0.009336, respectively). The 12th systemic prednisolone dose was significantly lower in patients who discontinued DPP4i (p = 0.0338). Nevertheless, several spontaneous remissions with systemic steroid off-therapy were also noted in the DPP4i-continuance group within 12 months of follow-up. This article supports the favorable impact of DPP4i withdrawal in patients with BP and shows that DPP4i may incite or aggravate BP, resulting in a milder disease course.
RESUMO
Phytophthora capsici is one of the most devastating pathogens facing pepper (Capsicum annuum) producers worldwide. Numerous factors, such as the race of the pathogen, the growing environment, and the source of resistance, have resulted in an overall lack of widely applicable molecular markers associated with resistance. Our objective was to determine the effect of the rating system on quantitative trait locus (QTL) detection and understand inheritance patterns of host resistance that can influence selection and molecular marker accuracy. We evaluated an F2:11 recombinant inbred line population screened against the highly virulent strain (Pc134) and scored using two widely used methods, developed by Bosland and Lindsey and by Black. The rating system developed by Bosland and Lindsey resulted in slightly higher logarithm of odds for the QTL on chromosome 5, and we detected a QTL on chromosome 12 uniquely using this rating system. A QTL on chromosome 10 was detected using both rating systems, but Black resulted in considerably higher logarithm of odds for this QTL compared with the Bosland and Lindsey system. Molecular markers developed were nominally better at accurately predicting the phenotype than previously published molecular markers but did not completely explain resistance in our validation populations. The inheritance pattern of resistance in one of our F2 populations did not significantly deviate from a 7:9 segregation ratio, indicating duplicative recessive epistasis. However, these results could be confounded by the presence of incomplete gene action, which was found through the improved selection accuracy when the phenotypes of heterozygous individuals were grouped with those with susceptible alleles.
Assuntos
Capsicum , Phytophthora , Humanos , Locos de Características Quantitativas/genética , Capsicum/genética , Epistasia Genética , Phytophthora/genética , Doenças das Plantas/genética , Resistência à Doença/genéticaRESUMO
BACKGROUND: Impaired wound healing is a serious diabetes complication compromising patients' quality of life. However, the pathogenesis of diabetic wounds (DWs) remains incompletely understood. Human epidermal keratinocyte (HEK) is the sentinel cell that initiates healing processes after the epidermal integrity has been disrupted. OBJECTIVE: This study aimed to investigate the functional roles of HEKs in wound healing and to identify candidate genes, signaling pathways and molecular signatures contributing to the DWs. METHODS: HEKs were cultured in normal or high-glucose environment, followed by scratch, to mimic the microenvironment of normal wounds and DWs. Subsequently, we performed RNA sequencing and systematically analyzed the expression profiles by bioinformatics approaches. RESULTS: High-glucose environment altered the keratinocyte transcriptome responses to wounding. In experimental model of DWs, we found that TNF, CYP24A1, NR4A3 and GGT1 were key overexpressed genes in keratinocytes and were implicated in multiple cellular responses. Further analysis showed that wounding in high-glucose environment activated G-protein-coupled receptor (GPCR) signaling, cAMP response element-binding protein (CREB) signaling, and adrenomedullin signaling in keratinocytes, while dysregulated skin development and immune responses as compared to their counterpart in normal glucose settings. CONCLUSION: This simplified in-vitro model serves as a valuable tool to gain insights into the molecular basis of DWs and to facilitate establishment of personalized therapies in clinical practice.
Assuntos
Diabetes Mellitus , Medicina de Precisão , Humanos , Qualidade de Vida , Transcriptoma , Glucose/metabolismo , Queratinócitos/metabolismo , Diabetes Mellitus/metabolismo , Células CultivadasRESUMO
Combining low-dose tofacitinib with 308-nm excimer may be an effective treatment for patients with nonsegmental vitiligo who were refractory to conventional therapies.
Assuntos
Terapia com Luz de Baixa Intensidade , Vitiligo , Humanos , Piperidinas , Pirimidinas , Resultado do Tratamento , Vitiligo/radioterapiaRESUMO
BACKGROUND: Macrophages play important roles during wound healing, and delayed healing in diabetics is associated with sustained inflammation. M1 type macrophage is recognized to secrete excessive amount of tumor necrosis factor-alpha (TNF-α) as compared to its M2 counterpart. OBJECTIVES: We hypothesized that macrophage polarization is different between diabetic and normal rats during skin wounding and has direct impact on keratinocyte function in the context of re-epithelialization. METHODS: Skin wounds were created in diabetic and control rats. The phenotypes of infiltrating macrophages, the levels of TNF-α, and the rate of wound closure were determined. Using cell model, the effects of M1 type macrophage on keratinocyte migration were evaluated, and the potential regulatory pathways were determined. RESULTS: The percentage of M1 macrophages and the levels of TNF-α expression were significantly higher in the perilesional area of diabetic rats as compared to control. The condition media (CM) from M1 type macrophage upregulated tissue inhibitor metalloproteinases (TIMP)-1 expression in keratinocytes and significantly reduced keratinocyte migratory capacity. Addition of neutralizing TNF-α antibody to the CM or gene-silencing of TIMP1 in keratinocytes restored the keratinocyte migratory capacity. Treating wounds of diabetic rats with TNF-α antagonist improved the wound healing process. CONCLUSIONS: In summary, high glucose wound environment harbored more M1 macrophages infiltration, an event that created excess TNF-α micro-environment. TNF-α upregulated TIMP1 expression in keratinocytes and resulted in impaired keratinocyte migration. Taken together, these events contributed to impaired wound healing during diabetic condition, and targeting TNF-α is a potential therapeutic option to improve diabetic wound healing.
Assuntos
Glicemia , Diabetes Mellitus Experimental/imunologia , Queratinócitos/fisiologia , Macrófagos/fisiologia , Reepitelização , Animais , Movimento Celular , Masculino , Ratos Wistar , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidoresRESUMO
INTRODUCTION: This study evaluated whether tumor expression of programmed death ligand 1 (PD-L1) could predict the response of EGFR-mutated NSCLC to EGFR tyrosine kinase inhibitor (TKI) therapy. METHODS: We retrospectively evaluated patients who received EGFR-TKIs for advanced NSCLC at the Guangdong Lung Cancer Institute between April 2016 and September 2017 and were not enrolled in clinical studies. The patients' EGFR and PD-L1 statuses were simultaneously evaluated. RESULTS: Among the 101 eligible patients, strong PD-L1 expression significantly decreased objective response rate, compared with weak or negative PD-L1 expression (35.7% versus 63.2% versus 67.3%, p = 0.002), and shortened progression-free survival (3.8 versus 6.0 versus 9.5 months, p < 0.001), regardless of EGFR mutation type (19del or L858R). Furthermore, positive PD-L1 expression was predominantly observed among patients with de novo resistance rather than acquired resistance to EGFR-TKIs (66.7% versus 30.2%, p = 0.009). Notably, we found a high proportion of PD-L1 and cluster of differentiation 8 (CD8) dual-positive cases among patients with de novo resistance (46.7%, 7 of 15). Finally, one patient with de novo resistance to EGFR-TKIs and PD-L1 and CD8 dual positivity experienced a favorable response to anti-programmed death 1 therapy. CONCLUSIONS: This study revealed the adverse effects of PD-L1 expression on EGFR-TKI efficacy, especially in NSCLC patients with de novo resistance. The findings indicate the reshaping of an inflamed immune phenotype characterized by PD-L1 and CD8 dual positivity and suggest potential therapeutic sensitivity to programmed death 1 blockade.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Receptor de Morte Celular Programada 1/biossíntese , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Mutação , Estudos Retrospectivos , Análise de SobrevidaRESUMO
INTRODUCTION: Inhibition of programmed cell death-1 (PD-1) and its ligand programmed death ligand 1 (PD-L1) by using an immune checkpoint inhibitor has emerged as a promising immunotherapy for NSCLC. The correlation of PD-L1 expression in tumor cells with treatment outcomes has been reported in many pivotal trials; however, the relationship remains unclear. Here, we demonstrate that those patients with both high density of PD-1-positive CD8 and PD-L1-positive CD4-positive CD25-positive (PD-1hi PD-L1hi) regulatory T cells (Tregs) have a better response to PD1/PD-L1 blockade. METHODS: In our study between April 1, 2014, and May 30, 2017, a total of 73 NSCLC peripheral blood samples and fresh tumor specimens were collected for study. Of these, 42 large (10-mm3) fresh tumor specimens were obtained from surgical procedures and checked for expression of immunology biomarkers, including PD-L1, PD-1, CD8, CD4, and CD25, in tumor cells and tumor-infiltrating lymphocytes (TILs) by flow cytometry, immunohistochemistry, and immunofluorescence (IF). Moreover, 31 small biopsy specimens from patients who received immunotherapy (pembrolizumab or nivolumab) were analyzed by immunohistochemistry and IF. The correlation between flow cytometry and IF detected for TILs' density was evaluated by Spearman's rank correlation test; the primary end point was progression-free survival. For the PD-1/PD-L1 blockade assay, the TILs and peripheral blood mononuclear CD8 T cells were cultured (1×105 per well) with anti-PD-1 (clone MIH4), anti-PD-L1 (clone MIH1). The cytotoxic activity of TILs in killing NSCLC cells after stimulation by anti-PD-1 and anti-PD-L1 was measured by a conventional 51Cr release assay. RESULTS: We first identified a population of high-PD-L1-expressing CD25-positive CD4-positive T cells (PD-L1hi Tregs) in the tumor microenvironment. The frequency of PD-L1hi Tregs was higher in tumor tissue (mean 48.6 ± 14.3% in CD25-positive CD3-positive CD4-positive T cells) than in blood (mean 35.4 ± 10.2% in CD25-positive CD3-positive CD4-positive T cells) and normal tissue (mean 38.6 ± 9.7% in CD25-positive CD3-positive CD4-positive T cells) (p < 0.05), as determined by flow cytometry. The frequency of PD-L1hi Tregs was positively correlated with PD-1-positive CD8 in Tregs. In addition, the TILs from these patients (PD-1hi PD-L1hi) showed PD-1/PD-L1 pathway dependence and could induce a greater killing effect of TILs by PD-1/PD-L1 blockade treatment. The patients with PD-L1-positive NSCLC with PD-1hi PD-L1hi TILs showed a better clinical outcome than those with a low frequency of PD-1hi CD8 or PD-L1hi Tregs (median progression-free survival not reached versus 2 months). CONCLUSIONS: Our findings suggested that the density of PD-L1-positive CD4-positive CD25-positive Tregs in the tumor microenvironment can serve as a diagnostic factor to supplement PD-L1 expression in tumor cells and predict the response to PD-1/PD-L1 blockade immunotherapy in NSCLC.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Imunoterapia/métodos , Neoplasias Pulmonares/genética , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Receptor de Morte Celular Programada 1/metabolismoRESUMO
BACKGROUND: Bone metastasis and skeletal related events (SREs) are common in non-small cell lung cancer (NSCLC). Patients with mutant epidermal growth factor receptor (EGFR) could benefit from tyrosine kinase inhibitors (TKIs). However, it is unclear whether SRE is influenced by EGFR status. We aimed to evaluate the correlation of EGFR status and TKIs with the incidence of SREs. METHODS: We conducted a retrospective study of stage IV NSCLC patients with bone metastasis. Incidence rate of SREs was collected and was compared using chi-square test. Logistic-regression analysis was used to identify the risk factors predicting the incidence of SREs. RESULTS: 410 eligible patients were enrolled in the study. 49.0% were detected with EGFR mutation. 49.8% of patients received EGFR-TKIs therapy prior to the onset of SREs. 42.7% experienced at least one SRE. Patients who were treated with TKIs held lower incidence of SREs than patients who were not treated with TKIs (23.5% vs 61.7%, p<0.001). Multivariate analysis showed that poor performance status (OR 5.550, 95%CI 2.290-13.450; p<0.001) and mutant EGFR (OR 3.050, 95%CI 1.608-5.787, p=0.001) were independent risk factors predicting the onset of SREs, while the usage of TKIs (OR 0.102, 95%CI 0.054-0.193, p<0.001) was a protective factor of SREs in NSCLC patients with bone metastasis. CONCLUSIONS: This study indicates that the incidence of SREs is common in both patients with and without EGFR mutation. Poor performance ability and mutant EGFR imply higher risks of SREs, while the usage of TKIs may be a protective factor of SREs.
RESUMO
BACKGROUND: Diabetes is an important global health issue due to its increasing prevalence and association with various complications. Impaired wound healing is a serious complication associated with diabetes that frequently results in infection and amputation. Galectin-7 (Gal-7) has been reported to play an important role during skin wound healing. Previously, we had demonstrated that high glucose environment alters physiologic functions of keratinocytes and contributes to impaired wound healing in diabetic condition. OBJECTIVE: In this study, we hypothesized that Gal-7 expression of keratinocytes may be involved in delayed wound healing of diabetics. METHODS: Using cultured human keratinocytes and diabetic mice model, the Gal-7 expression was evaluated under high glucose environment. RESULTS: Our results demonstrated that high-glucose environment reduced Gal-7 expression, a molecule that plays an important role in keratinocyte migration. Additionally, we found that increased O-linked N-Acetyl-glucosamine (O-GlcNAc) is responsible for reduced Gal-7 expression in keratinocytes exposed to high glucose environment. CONCLUSION: Taken together, restoring the levels of Gal-7 and O-GlcNAc glycosylation may present novel therapeutic approach to promote wound healing in diabetic patients.
Assuntos
Acetilglucosamina/metabolismo , Diabetes Mellitus Experimental/patologia , Galectinas/metabolismo , Glucose/metabolismo , Cicatrização , Animais , Movimento Celular , Epigênese Genética , Galectinas/genética , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Voluntários Saudáveis , Humanos , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Pelados , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/patologia , Estreptozocina/toxicidadeRESUMO
Ultraviolet B (UVB) radiation from the sun may lead to photocarcinogenesis of the skin. Sunscreens were used to protect the skin by reducing UVB irradiance, but sunscreen use did not reduce sunburn episodes. It was shown that UVB-induced erythema depends on surface exposure but not irradiance of UVB. We previously showed that irradiance plays a critical role in UVB-induced cell differentiation. This study investigated the impact of irradiance on UVB-induced photocarcinogenesis. For hairless mice receiving equivalent exposure of UVB radiation, the low irradiance (LI) UVB treated mice showed more rapid tumor development, larger tumor burden, and more keratinocytes harboring mutant p53 in the epidermis as compared to their high irradiance (HI) UVB treated counterpart. Mechanistically, using cell models, we demonstrated that LI UVB radiation allowed more keratinocytes harboring DNA damages to enter cell cycle via ERK-related signaling as compared to its HI UVB counterpart. These results indicated that at equivalent exposure, UVB radiation at LI has higher photocarcinogenic potential as compared to its HI counterpart. Since erythema is the observed sunburn at moderate doses and use of sunscreen was not found to associate with reduced sunburn episodes, the biological significance of sunburn with or without sunscreen use warrants further investigation.
Assuntos
Carcinogênese/efeitos da radiação , Raios Ultravioleta , Adulto , Animais , Bromodesoxiuridina/metabolismo , Butadienos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Contagem de Células , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Dano ao DNA , Dermatite de Contato/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fase G2/efeitos da radiação , Humanos , Terapia de Imunossupressão , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Camundongos Pelados , Mitose/efeitos da radiação , Mutação/genética , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Dímeros de Pirimidina/metabolismo , Neoplasias Cutâneas/patologia , Proteína Supressora de Tumor p53/metabolismoRESUMO
BACKGROUND: Bruchid beetles are an important storage pest of grain legumes. Callosobruchus sp. infect mungbean (Vigna radiata) at low levels in the field, multiply during grain storage and can destroy seed stocks in a few months. Resistance against bruchid beetles has been found in wild mungbean V. radiata var. sublobata TC1966 and in cultivated mungbean line V2802. RESULTS: Bruchid resistance data were obtained from recombinant inbred line populations TC1966 (V. radiata var. sublobata) × NM92 (F12) and V2802 (V. radiata) × NM94 (F7). More than 6,000 single nucleotide polymorphic markers were generated through genotyping by sequencing (GBS) for each of these populations and were used to map bruchid resistance genes. One highly significant quantitative trait locus (QTL) associated with bruchid resistance was mapped to chromosome 5 on genetic maps of both populations, suggesting that TC1966 and V2802 contain the same resistance locus. Co-segregation of all markers associated with resistance indicated the presence of only one major resistance QTL on chromosome 5, while QTL analysis based on physical map positions of the markers suggested the presence of multiple QTLs on different chromosomes. The diagnostic capacity of the identified molecular markers located in the QTL to correctly predict resistance was up to 100 %. CONCLUSIONS: Molecular markers tightly linked to bruchid resistance loci of two different mungbean resistance sources were developed and validated. These markers are highly useful for developing resistant lines.
Assuntos
Besouros/fisiologia , Doenças das Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Vigna/genética , Animais , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Análise de Sequência de DNA , Vigna/imunologia , Vigna/parasitologiaRESUMO
Programmed cell death protein-1 (PD-1) and ligand (PD-L1) provide an important escape mechanism from immune attack, and blockade therapy of these proteins show promising clinical benefits in many types of cancer. PD-L1 can be induced by interferon-gamma (IFN-γ), hypoxia, or toll-like receptor (TLR)-mediated pathways that confer adaptive immune resistance, or upregulated by oncogenic signals leading to constitutive expression and resulting in intrinsic immune resistance. The PD-1/PD-L1 checkpoint blockade, which targets regulatory pathways in T cells to overcome immune resistance, is correlated to PD-L1 expression pattern and the presence of tumor-infiltrating lymphocytes (TILs). Meanwhile, immunogenic mutation loads show significant response to checkpoint blockade, which is probably due to PD-1/L1 status and TIL content. Finally, the clinical strategies to design effective checkpoint-targeting immunotherapies are based on the classification of inducible/constitutive expression of PD-L1 and the presence of TILs.
Assuntos
Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Neoplasias/genética , Receptor de Morte Celular Programada 1/genética , Antígeno B7-H1/biossíntese , Biomarcadores Tumorais/biossíntese , Pontos de Checagem do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia , Interferon gama/uso terapêutico , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Neoplasias/diagnóstico , Neoplasias/imunologia , Neoplasias/terapia , Receptor de Morte Celular Programada 1/biossíntese , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores Toll-Like/genéticaRESUMO
Diabetes is an important health issue because of its increasing prevalence and association with impaired wound healing. Epidermal keratinocytes with overexpressed antiangiogenic molecule thrombospondin-1 (TSP1) have been shown to impair proper wound healing. This study examined the potential involvement of keratinocyte-derived TSP1 on diabetic wound healing. Cultured human keratinocytes and diabetic rat model were used to evaluate the effect of high-glucose environment on TSP1 expression in epidermal keratinocytes, and the molecular mechanisms involved in the process were also studied. We demonstrated that high-glucose environment increased TSP1 expression in keratinocytes. In addition, increased oxidative stress induced DNA hypomethylation at the TSP1 promoter region in keratinocytes exposed to high-glucose environment. Similar findings were found in our diabetic rat model. Early antioxidant administration normalized TSP1 expression and global DNA methylation status in diabetic rat skin and improved wound healing in vivo. Because oxidative stress contributed to TSP1 DNA hypomethylation, early recognition of diabetic condition and timely administration of antioxidant are logical approaches to reduce complications associated with diabetes as alterations in epigenome may not be reversible by controlling glucose levels during the later stages of disease course.
Assuntos
Metilação de DNA , Glucose/metabolismo , Queratinócitos/metabolismo , Trombospondina 1/metabolismo , Adulto , Animais , Células Cultivadas , Meios de Cultura , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Humanos , Masculino , Ratos , Ratos Wistar , CicatrizaçãoAssuntos
Glucose/farmacologia , Interleucinas/fisiologia , Queratinócitos/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Adulto , Animais , Movimento Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Humanos , Interleucinas/biossíntese , Interleucinas/genética , Queratinócitos/citologia , Leucócitos Mononucleares/metabolismo , Masculino , Metaloproteinase 3 da Matriz/biossíntese , Metaloproteinase 3 da Matriz/genética , Concentração Osmolar , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Receptores de Interleucina/fisiologia , Pele/lesões , Pele/metabolismo , Cicatrização , Interleucina 22RESUMO
Two new Ru(II) complexes [Ru(tpy)(dpoq)Cl](+)1 and [Ru(tpy)(dpoq)CH3CN](2+)2 (tpy = 2,2':6',2''-terpyridine; dpoq = dipyrido[1,2,5]oxadiazolo[3,4-b]quinoxaline) have been synthesized and characterized by elemental analysis, (1)H NMR, electrospray ionization mass spectra (ESI-MS) and X-ray crystallographic study. The experimental results of spectra titration, thermal denaturation and viscosity measurements suggest that the two complexes intercalatively bind to DNA. When irradiated under light, the two complexes could efficiently photocleave DNA both under aerobic and anaerobic condition. The mechanism studies reveal that the photocleavage reaction functions through both oxygen-independent (photoinduced electron transfer, type III reaction) and oxygen-dependent (singlet oxygen generation, type II reaction) pathways and the oxygen-independent pathway is the major process. These complexes will be more promising photodynamic therapy (PDT) candidates used for treating hypoxic tumors.
Assuntos
Complexos de Coordenação/síntese química , DNA/química , Substâncias Intercalantes/síntese química , Fármacos Fotossensibilizantes/síntese química , Rutênio/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Hidrólise , Substâncias Intercalantes/química , Oxirredução , Fármacos Fotossensibilizantes/químicaRESUMO
Impaired wound healing frequently occurs in patients with diabetes. Interleukin (IL)-8 production by keratinocyte is responsible for recruiting neutrophils during healing. Intense inflammation is associated with diabetic wounds, while reduction of neutrophil infiltration is associated with enhanced healing. We hypothesized that increased neutrophil recruitment by keratinocytes may contribute to the delayed healing of diabetic wounds. Using cultured human keratinocytes and a diabetic rat model, the current study shows that a high-glucose environment enhanced IL-8 production via epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase (ERK) pathway in a reactive oxygen species (ROS)-dependent manner in keratinocytes. In addition, diabetic rat skin showed enhanced EGFR, ERK, and IL-8 expression compared with control rats. The dermal neutrophil infiltration of the wound, as represented by expression of myeloperoxidase level, was also significantly higher in diabetic rats. Treating diabetic rats with dapsone, an agent known to inhibit neutrophil function, was associated with improved healing. In conclusion, IL-8 production and neutrophil infiltration are increased in a high-glucose environment due to elevated ROS level and contributed to impaired wound healing in diabetic skin. Targeting these dysfunctions may present novel therapeutic approaches.