Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913071

RESUMO

Metabolic disorders are highly prevalent in modern society. Exercise mimetics are defined as pharmacological compounds that can produce the beneficial effects of fitness. Recently, there has been increased interest in the role of eugenol and transient receptor potential vanilloid 1 (TRPV1) in improving metabolic health. The aim of this study was to investigate whether eugenol acts as an exercise mimetic by activating TRPV1. Here, we showed that eugenol improved endurance capacity, caused the conversion of fast-to-slow muscle fibers, and promoted white fat browning and lipolysis in mice. Mechanistically, eugenol promoted muscle fiber-type transformation by activating TRPV1-mediated CaN signaling pathway. Subsequently, we identified IL-15 as a myokine that is regulated by the CaN/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. Moreover, we found that TRPV1-mediated CaN/NFATc1 signaling, activated by eugenol, controlled IL-15 levels in C2C12 myotubes. Our results suggest that eugenol may act as an exercise mimetic to improve metabolic health via activating the TRPV1-mediated CaN signaling pathway.


Assuntos
Eugenol , Interleucina-15 , Fibras Musculares Esqueléticas , Fatores de Transcrição NFATC , Condicionamento Físico Animal , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Animais , Interleucina-15/metabolismo , Eugenol/farmacologia , Eugenol/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Miocinas
2.
Mol Nutr Food Res ; 68(4): e2200719, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193241

RESUMO

SCOPE: Endurance capacity is essential for endurance athletes' achievement and individuals' health. Nutritional supplements are a proven way to enhance endurance capacity. Previous studies have shown that ferulic acid (FA) enhances endurance capacity, but the underlying mechanism is unclear. The study is aimed to investigate the mechanism by which FA increases endurance capacity. METHODS AND RESULTS: Forty mice are divided into control and 0.5% FA-supplemented groups, and an exhaustive swimming test demonstrates increased endurance capacity with FA supplementation. This study investigates the underlying mechanism for this effect of FA. Firstly, RT-PCR and western blot analysis find that FA increases the transformation from fast to slow muscle fiber. Additionally, adenosine triphosphate concentration, metabolic enzyme activity, and mitochondrial DNA analysis find that FA increases mitochondrial biogenesis and activates nuclear factor erythroid 2-related factor (NRF)1 signaling pathway in muscle. Besides, through antioxidant capacity analysis, this study finds that FA activates NRF2 signaling pathway and improves the antioxidant capacity in muscle. Moreover, inhibiting NRF2 eliminates FA's effect on muscle fiber transformation in C2C12 cells. CONCLUSION: Our results suggest that FA increases endurance capacity by promoting skeletal muscle oxidative phenotype, mitochondrial function, and antioxidant capacity, which may be related to the NRF1 and NRF2 signaling pathways.


Assuntos
Antioxidantes , Ácidos Cumáricos , Fator 2 Relacionado a NF-E2 , Humanos , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias , Fenótipo , Estresse Oxidativo
3.
IEEE Trans Pattern Anal Mach Intell ; 45(7): 8324-8341, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37015370

RESUMO

Recently, fusing the LiDAR point cloud and camera image to improve the performance and robustness of 3D object detection has received more and more attention, as these two modalities naturally possess strong complementarity. In this paper, we propose EPNet++ for multi-modal 3D object detection by introducing a novel Cascade Bi-directional Fusion (CB-Fusion) module and a Multi-Modal Consistency (MC) loss. More concretely, the proposed CB-Fusion module enhances point features with plentiful semantic information absorbed from the image features in a cascade bi-directional interaction fusion manner, leading to more powerful and discriminative feature representations. The MC loss explicitly guarantees the consistency between predicted scores from two modalities to obtain more comprehensive and reliable confidence scores. The experimental results on the KITTI, JRDB and SUN-RGBD datasets demonstrate the superiority of EPNet++ over the state-of-the-art methods. Besides, we emphasize a critical but easily overlooked problem, which is to explore the performance and robustness of a 3D detector in a sparser scene. Extensive experiments present that EPNet++ outperforms the existing SOTA methods with remarkable margins in highly sparse point cloud cases, which might be an available direction to reduce the expensive cost of LiDAR sensors.

4.
Phytother Res ; 37(7): 2759-2770, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36762415

RESUMO

Eugenol is a major component of clove oil. A recent study found that inhalation of eugenol promoted the appetite of mice. However, whether oral ingestion of eugenol promoted appetite is unclear and its mechanism await study. Here, mice were divided into four treatments (n = 20) and fed a basal diet supplemented with 0%, 0.005%, 0.01% and 0.02% eugenol for 4 weeks. In addition, mice (n = 7) were injected intraperitoneally with 3 mg/kg body weight eugenol. Our data showed that feeding mice with 0.01% and 0.02% eugenol promoted their appetite. In addition, the short-term intraperitoneal injection of eugenol enhanced the feed intake in mice within 1 h. Further studies found that dietary eugenol increased orexigenic factors expression and decreased anorexigenic factors expression in mice. We then carried out N38 cell experiments to explore the transient receptor potential (TRP) channels-dependent mechanism of eugenol in promoting appetite. We found that eugenol activated the TRP channels mediated-CaMKK2/AMPK signaling pathway in the hypothalamus and N38 cells. Besides, the inhibition of TRPV1 and AMPK eliminated the upregulation of eugenol on the agouti-related protein level in N38 cells. In conclusion, the study suggested that eugenol promotes appetite through TRPV1 mediated-CaMKK2/AMPK signaling pathway.


Assuntos
Apetite , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Eugenol/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Transdução de Sinais
5.
J Agric Food Chem ; 70(24): 7576-7585, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35679090

RESUMO

In recent years, the function of plant polyphenols to improve the intestinal barrier has been fully demonstrated. However, the exact mechanisms linking plant polyphenols with the intestinal barrier function have not yet been established. Apple polyphenols (APs) are safe and healthy nutrients, which are extracted from apples and their byproducts. Using pig and IPEC-J2 cell models, this study investigated the effects of dietary AP supplementation on intestinal antioxidant capacity and barrier function. Then, we further explored the role of the Nrf2/Keap1 signaling pathway in maintaining intestinal antioxidant capacity and barrier function. Our study found that dietary AP supplementation improved the intestinal mechanical barrier by promoting the intestinal morphology and intestinal tight junction protein expression, improved the intestinal immune barrier by increasing intestinal secretory immunoglobulin A production, and improved the intestinal biological barrier by increasing probiotics and decreasing the Escherichia coli population. Further research found that dietary AP supplementation increased the intestinal antioxidant capacity and activated the Nrf2/Keap1 signaling pathway. Finally, after treatment with Nrf2-specific inhibitor ML-385, the upregulation effect of APs on antioxidant capacity and tight junction protein expression was reduced in IPEC-J2 cells. Our results suggested that APs promoted intestinal antioxidant capacity and barrier function via the Nrf2/Keap1 signaling pathway.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Animais , Antioxidantes/metabolismo , Mucosa Intestinal/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Polifenóis/metabolismo , Transdução de Sinais , Suínos , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
6.
IEEE Trans Pattern Anal Mach Intell ; 44(8): 4306-4320, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33755557

RESUMO

This paper proposes a new generative adversarial network for pose transfer, i.e., transferring the pose of a given person to a target pose. We design a progressive generator which comprises a sequence of transfer blocks. Each block performs an intermediate transfer step by modeling the relationship between the condition and the target poses with attention mechanism. Two types of blocks are introduced, namely pose-attentional transfer block (PATB) and aligned pose-attentional transfer block (APATB). Compared with previous works, our model generates more photorealistic person images that retain better appearance consistency and shape consistency compared with input images. We verify the efficacy of the model on the Market-1501 and DeepFashion datasets, using quantitative and qualitative measures. Furthermore, we show that our method can be used for data augmentation for the person re-identification task, alleviating the issue of data insufficiency. Code and pretrained models are available at: https://github.com/tengteng95/Pose-Transfer.git.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos
7.
J Hazard Mater ; 381: 120956, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31445472

RESUMO

Z-scheme heterojunction can efficiently suppress the electron-holes recombination and promote the charges transfer rate, which result in the high photocatalytic performance. Herein, a flower-flake-sphere like CuBi2O4/WO3 hybrid photocatalyst was fabricated via a precursor-guided hydrothermal method. The morphology, structure, composition, chemical and electronic properties of the as-prepared samples were systematically investigated by multiple techniques (XRD, FT-IR, SEM, TEM, XPS, UV-vis, BET, PL, ESR. etc.). Particularly, the 60 wt% CuBi2O4/WO3 nanocomposite exhibited the highest photocatalytic activity for tetracycline (20 mg/L) degradation under simulated solar light irradiation. The rate constant was 0.0179 min-1, which was almost 8 times and 4.5 times higher than that of bulk WO3 and CuBi2O4, respectively. The experimental results confirmed that CuBi2O4 made a direct Z-scheme heterojunction by band alignment with WO3, which are conducive to the efficient charges separation and prolonged carriers lifetime. According to the quenching experiments, •OH and •O2- were testified to be the predominant active species. The electrons accumulated in the CuBi2O4 negative CB and the holes in the WO3 positive VB made significant contribution to the strong redox ability of the CuBi2O4/WO3 nanocomposite. This work provides some deep insights into the design of band-alignment-based Z-scheme heterostuctures, which is also applicable to other catalytic system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...