RESUMO
Peste des petits ruminants virus (PPRV) is a multi-host pathogen with sheep and goats as main hosts. To investigate the role of cattle in the epidemiology of PPR, we simulated conditions similar to East African zero-grazing husbandry practices in a series of trials with local Zebu cattle (Bos taurus indicus) co-housed with goats (Capra aegagrus hircus). Furthermore, we developed a mathematical model to assess the impact of PPRV-transmission from cattle to goats. Of the 32 cattle intranasally infected with the locally endemic lineage IV strain PPRV/Ethiopia/Habru/2014 none transmitted PPRV to 32 co-housed goats. However, these cattle or cattle co-housed with PPRV-infected goats seroconverted. The results confirm previous studies that cattle currently play a negligible role in PPRV-transmission and small ruminant vaccination is sufficient for eradication. However, the possible emergence of PPRV strains more virulent for cattle may impact eradication. Therefore, continued monitoring of PPRV circulation and evolution is recommended.
Assuntos
Doenças das Cabras , Cabras , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Animais , Peste dos Pequenos Ruminantes/transmissão , Peste dos Pequenos Ruminantes/virologia , Peste dos Pequenos Ruminantes/epidemiologia , Bovinos , Vírus da Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/fisiologia , Cabras/virologia , Doenças das Cabras/virologia , Doenças das Cabras/transmissão , Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Erradicação de Doenças/métodosRESUMO
Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy.
Assuntos
Pandemias , Vírus , Animais , Zoonoses/epidemiologia , EcossistemaRESUMO
During recent decades, pathogens that originated in bats have become an increasing public health concern. A major challenge is to identify how those pathogens spill over into human populations to generate a pandemic threat1. Many correlational studies associate spillover with changes in land use or other anthropogenic stressors2,3, although the mechanisms underlying the observed correlations have not been identified4. One limitation is the lack of spatially and temporally explicit data on multiple spillovers, and on the connections among spillovers, reservoir host ecology and behaviour and viral dynamics. We present 25 years of data on land-use change, bat behaviour and spillover of Hendra virus from Pteropodid bats to horses in subtropical Australia. These data show that bats are responding to environmental change by persistently adopting behaviours that were previously transient responses to nutritional stress. Interactions between land-use change and climate now lead to persistent bat residency in agricultural areas, where periodic food shortages drive clusters of spillovers. Pulses of winter flowering of trees in remnant forests appeared to prevent spillover. We developed integrative Bayesian network models based on these phenomena that accurately predicted the presence or absence of clusters of spillovers in each of the 25 years. Our long-term study identifies the mechanistic connections between habitat loss, climate and increased spillover risk. It provides a framework for examining causes of bat virus spillover and for developing ecological countermeasures to prevent pandemics.
Assuntos
Quirópteros , Ecologia , Ecossistema , Vírus Hendra , Cavalos , Animais , Humanos , Austrália , Teorema de Bayes , Quirópteros/virologia , Clima , Cavalos/virologia , Saúde Pública , Vírus Hendra/isolamento & purificação , Recursos Naturais , Agricultura , Florestas , Abastecimento de Alimentos , Pandemias/prevenção & controle , Pandemias/veterináriaRESUMO
There is mounting evidence of SARS-CoV-2 spillover from humans into many domestic, companion, and wild animal species. Research indicates that humans have infected white-tailed deer, and that deer-to-deer transmission has occurred, indicating that deer could be a wildlife reservoir and a source of novel SARS-CoV-2 variants. We examined the hypothesis that the Omicron variant is actively and asymptomatically infecting the free-ranging deer of New York City. Between December 2021 and February 2022, 155 deer on Staten Island, New York, were anesthetized and examined for gross abnormalities and illnesses. Paired nasopharyngeal swabs and blood samples were collected and analyzed for the presence of SARS-CoV-2 RNA and antibodies. Of 135 serum samples, 19 (14.1%) indicated SARS-CoV-2 exposure, and 11 reacted most strongly to the wild-type B.1 lineage. Of the 71 swabs, 8 were positive for SARS-CoV-2 RNA (4 Omicron and 4 Delta). Two of the animals had active infections and robust neutralizing antibodies, revealing evidence of reinfection or early seroconversion in deer. Variants of concern continue to circulate among and may reinfect US deer populations, and establish enzootic transmission cycles in the wild: this warrants a coordinated One Health response, to proactively surveil, identify, and curtail variants of concern before they can spill back into humans.
Assuntos
COVID-19 , Cervos , Humanos , Animais , Cidade de Nova Iorque/epidemiologia , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/veterinária , Animais SelvagensRESUMO
Helminth infections are cryptic and can be difficult to study in wildlife species. Helminth research in wildlife hosts has historically required invasive animal handling and necropsy, while results from noninvasive parasite research, like scat analysis, may not be possible at the helminth species or individual host levels. To increase the utility of noninvasive sampling, individual hosts can be identified by applying molecular methods. This allows for longitudinal sampling of known hosts and can be paired with individual-level covariates. Here we evaluate a combination of methods and existing long-term monitoring data to identify patterns of cestode infections in gray wolves in Yellowstone National Park. Our goals were: (1) Identify the species and apparent prevalence of cestodes infecting Yellowstone wolves; (2) Assess the relationships between wolf biological and social characteristics and cestode infections; (3) Examine how wolf samples were affected by environmental conditions with respect to the success of individual genotyping. We collected over 200 wolf scats from 2018-2020 and conducted laboratory analyses including individual wolf genotyping, sex identification, cestode identification, and fecal glucocorticoid measurements. Wolf genotyping success rate was 45%, which was higher in the winter but decreased with higher precipitation and as more time elapsed between scat deposit and collection. One cestode species was detected in 28% of all fecal samples, and 38% of known individuals. The most common infection was Echinococcus granulosus sensu lato (primarily E. canadensis). Adult wolves had 4x greater odds of having a cestode infection than pups, as well as wolves sampled in the winter. Our methods provide an alternative approach to estimate cestode prevalence and to linking parasites to known individuals in a wild host system, but may be most useful when employed in existing study systems and when field collections are designed to minimize the time between fecal deposition and collection.
Assuntos
Cestoides , Infecções por Cestoides , Helmintos , Parasitos , Lobos , Animais , Lobos/parasitologia , Prevalência , Infecções por Cestoides/epidemiologia , Infecções por Cestoides/veterinária , Infecções por Cestoides/parasitologiaRESUMO
We know much about pathogen evolution and the emergence of new disease strains, but less about host resistance and how it is signaled to other individuals and subsequently maintained. The cline in frequency of black-coated wolves (Canis lupus) across North America is hypothesized to result from a relationship with canine distemper virus (CDV) outbreaks. We tested this hypothesis using cross-sectional data from wolf populations across North America that vary in the prevalence of CDV and the allele that makes coats black, longitudinal data from Yellowstone National Park, and modeling. We found that the frequency of CDV outbreaks generates fluctuating selection that results in heterozygote advantage that in turn affects the frequency of the black allele, optimal mating behavior, and black wolf cline across the continent.
Assuntos
Surtos de Doenças , Vírus da Cinomose Canina , Cinomose , Cor de Cabelo , Interações Hospedeiro-Patógeno , Preferência de Acasalamento Animal , Seleção Sexual , Lobos , Animais , Estudos Transversais , América do Norte , Lobos/genética , Lobos/virologia , Cinomose/epidemiologia , Cinomose/genética , Prevalência , Alelos , Interações Hospedeiro-Patógeno/genética , Cor de Cabelo/genéticaRESUMO
The emergence of a novel pathogen in a susceptible population can cause rapid spread of infection. High prevalence of SARS-CoV-2 infection in white-tailed deer (Odocoileus virginianus) has been reported in multiple locations, likely resulting from several human-to-deer spillover events followed by deer-to-deer transmission. Knowledge of the risk and direction of SARS-CoV-2 transmission between humans and potential reservoir hosts is essential for effective disease control and prioritisation of interventions. Using genomic data, we reconstruct the transmission history of SARS-CoV-2 in humans and deer, estimate the case finding rate and attempt to infer relative rates of transmission between species. We found no evidence of direct or indirect transmission from deer to human. However, with an estimated case finding rate of only 4.2%, spillback to humans cannot be ruled out. The extensive transmission of SARS-CoV-2 within deer populations and the large number of unsampled cases highlights the need for active surveillance at the human-animal interface.
Assuntos
COVID-19 , Cervos , SARS-CoV-2 , Zoonoses Virais , Animais , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/veterinária , Cervos/virologia , Monitoramento Ambiental , Humanos , Medição de Risco , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologiaRESUMO
Knowledge of the dynamics and genetic diversity of Nipah virus circulating in bats and at the human-animal interface is limited by current sampling efforts, which produce few detections of viral RNA. We report a series of investigations at Pteropus medius bat roosts identified near the locations of human Nipah cases in Bangladesh during 2012-2019. Pooled bat urine was collected from 23 roosts; 7 roosts (30%) had >1 sample in which Nipah RNA was detected from the first visit. In subsequent visits to these 7 roosts, RNA was detected in bat urine up to 52 days after the presumed exposure of the human case-patient, although the probability of detection declined rapidly with time. These results suggest that rapidly deployed investigations of Nipah virus shedding from bat roosts near human cases could increase the success of viral sequencing compared with background surveillance and could enhance understanding of Nipah virus ecology and evolution.
Assuntos
Quirópteros , Infecções por Henipavirus , Vírus Nipah , Animais , Bangladesh/epidemiologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/veterinária , Humanos , Vírus Nipah/genética , RNA Viral/genéticaRESUMO
White-tailed deer ( Odocoileus virginianus ) are highly susceptible to infection by SARS-CoV-2, with multiple reports of widespread spillover of virus from humans to free-living deer. While the recently emerged SARS-CoV-2 B.1.1.529 Omicron variant of concern (VoC) has been shown to be notably more transmissible amongst humans, its ability to cause infection and spillover to non-human animals remains a challenge of concern. We found that 19 of the 131 (14.5%; 95% CI: 0.10-0.22) white-tailed deer opportunistically sampled on Staten Island, New York, between December 12, 2021, and January 31, 2022, were positive for SARS-CoV-2 specific serum antibodies using a surrogate virus neutralization assay, indicating prior exposure. The results also revealed strong evidence of age-dependence in antibody prevalence. A significantly (χ 2 , p < 0.001) greater proportion of yearling deer possessed neutralizing antibodies as compared with fawns (OR=12.7; 95% CI 4-37.5). Importantly, SARS-CoV-2 nucleic acid was detected in nasal swabs from seven of 68 (10.29%; 95% CI: 0.0-0.20) of the sampled deer, and whole-genome sequencing identified the SARS-CoV-2 Omicron VoC (B.1.1.529) is circulating amongst the white-tailed deer on Staten Island. Phylogenetic analyses revealed the deer Omicron sequences clustered closely with other, recently reported Omicron sequences recovered from infected humans in New York City and elsewhere, consistent with human to deer spillover. Interestingly, one individual deer was positive for viral RNA and had a high level of neutralizing antibodies, suggesting either rapid serological conversion during an ongoing infection or a "breakthrough" infection in a previously exposed animal. Together, our findings show that the SARS-CoV-2 B.1.1.529 Omicron VoC can infect white-tailed deer and highlights an urgent need for comprehensive surveillance of susceptible animal species to identify ecological transmission networks and better assess the potential risks of spillback to humans. KEY FINDINGS: These studies provide strong evidence of infection of free-living white-tailed deer with the SARS-CoV-2 B.1.1.529 Omicron variant of concern on Staten Island, New York, and highlight an urgent need for investigations on human-to-animal-to-human spillovers/spillbacks as well as on better defining the expanding host-range of SARS-CoV-2 in non-human animals and the environment.
RESUMO
Many animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and could act as reservoirs; however, transmission in free-living animals has not been documented. White-tailed deer, the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns can transmit the virus. To test the hypothesis that SARS-CoV-2 is circulating in deer, 283 retropharyngeal lymph node (RPLN) samples collected from 151 free-living and 132 captive deer in Iowa from April 2020 through January of 2021 were assayed for the presence of SARS-CoV-2 RNA. Ninety-four of the 283 (33.2%) deer samples were positive for SARS-CoV-2 RNA as assessed by RT-PCR. Notably, following the November 2020 peak of human cases in Iowa, and coinciding with the onset of winter and the peak deer hunting season, SARS-CoV-2 RNA was detected in 80 of 97 (82.5%) RPLN samples collected over a 7-wk period. Whole genome sequencing of all 94 positive RPLN samples identified 12 SARS-CoV-2 lineages, with B.1.2 (n = 51; 54.5%) and B.1.311 (n = 19; 20%) accounting for â¼75% of all samples. The geographic distribution and nesting of clusters of deer and human lineages strongly suggest multiple human-to-deer transmission events followed by subsequent deer-to-deer spread. These discoveries have important implications for the long-term persistence of the SARS-CoV-2 pandemic. Our findings highlight an urgent need for a robust and proactive "One Health" approach to obtain enhanced understanding of the ecology, molecular evolution, and dissemination of SARS-CoV-2.
Assuntos
COVID-19/transmissão , Cervos/virologia , SARS-CoV-2/isolamento & purificação , Zoonoses/virologia , Animais , COVID-19/virologia , Reservatórios de Doenças/virologia , Humanos , SARS-CoV-2/genéticaRESUMO
Predators may create healthier prey populations by selectively removing diseased individuals. Predators typically prefer some ages of prey over others, which may, or may not, align with those prey ages that are most likely to be diseased. The interaction of age-specific infection and predation has not been previously explored and likely has sizable effects on disease dynamics. We hypothesize that predator cleansing effects will be greater when the disease and predation occur in the same prey age groups. We examine the predator cleansing effect using a model where both vulnerability to predators and pathogen prevalence vary with age. We tailor this model to chronic wasting disease (CWD) in mule deer and elk populations in the Greater Yellowstone Ecosystem, with empirical data from Yellowstone grey wolves and cougars. Model results suggest that under moderate, yet realistic, predation pressure from cougars and wolves independently, predators may decrease CWD outbreak size substantially and delay the accumulation of symptomatic deer and elk. The magnitude of this effect is driven by the ability of predators to selectively remove late-stage CWD infections that are likely the most responsible for transmission, but this may not be the age class they typically select. Thus, predators that select for infected young adults over uninfected juveniles have a stronger cleansing effect, and these effects are strengthened when transmission rates increase with increasing prey morbidity. There are also trade-offs from a management perspective-that is, increasing predator kill rates can result in opposing forces on prey abundance and CWD prevalence. Our modelling exploration shows that predators have the potential to reduce prevalence in prey populations when prey age and disease severity are considered, yet the strength of this effect is influenced by predators' selection for demography or body condition. Current CWD management focuses on increasing cervid hunting as the primary management tool, and our results suggest predators may also be a useful tool under certain conditions, but not necessarily without additional impacts on host abundance and demography. Protected areas with predator populations will play a large role in informing the debate over predator impacts on disease.
Assuntos
Cervos , Lobos , Fatores Etários , Animais , Doença Crônica , Ecossistema , Cadeia Alimentar , Dinâmica Populacional , Comportamento PredatórioRESUMO
Freshwater systems are critical to life on earth, yet they are threatened by the increasing rate of synthetic chemical pollution. Current predictions of the effects of synthetic chemicals on freshwater ecosystems are hampered by the sheer number of chemical contaminants entering aquatic systems, the diversity of organisms inhabiting these systems, the myriad possible direct and indirect effects resulting from these combinations, and uncertainties concerning how contaminants might alter ecosystem metabolism via changes in biodiversity. To address these knowledge gaps, we conducted a mesocosm experiment that elucidated the responses of ponds composed of phytoplankton and zooplankton to standardized concentrations of 12 pesticides, nested within four pesticide classes, and two pesticide types. We show that the effects of the pesticides on algae were consistent within herbicides and insecticides and that responses of over 70 phytoplankton species and genera were consistent within broad taxonomic groups. Insecticides generated top-down effects on phytoplankton community composition and abundance, which were associated with persistent increases in ecosystem respiration. Insecticides had direct toxic effects on cladocerans, which led to competitive release of copepods. These changes in the zooplankton community led to a decrease in green algae and a modest increase in diatoms. Herbicides did not change phytoplankton composition but reduced total phytoplankton abundance. This reduction in phytoplankton led to short-term decreases in ecosystem respiration. Given that ponds release atmospheric carbon and that worldwide pesticide pollution continues to increase exponentially, scientists and policy makers should pay more attention to the ways pesticides alter the carbon cycle in ponds via changes in communities, as demonstrated by our results. Our results show that these predictions can be simplified by grouping pesticides into types and species into functional groups. Adopting this approach provides an opportunity to improve the efficiency of risk assessment and mitigation responses to global change.
Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Ciclo do Carbono , Ecossistema , Praguicidas/toxicidade , Fitoplâncton , Respiração , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , ZooplânctonRESUMO
In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002-2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat-coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic.
Assuntos
COVID-19 , Quirópteros , Animais , Evolução Molecular , Humanos , Filogenia , SARS-CoV-2/genéticaRESUMO
Pandemics are a consequence of a series of processes that span scales from viral biology at 10-9 m to global transmission at 106 m. The pathogen passes from one host species to another through a sequence of events that starts with an infected reservoir host and entails interspecific contact, innate immune responses, receptor protein structure within the potential host, and the global spread of the novel pathogen through the naive host population. Each event presents a potential barrier to the onward passage of the virus and should be characterized with an integrated transdisciplinary approach. Epidemic control is based on the prevention of exposure, infection, and disease. However, the ultimate pandemic prevention is prevention of the spillover event itself. Here, we focus on the potential for preventing the spillover of henipaviruses, a group of viruses derived from bats that frequently cross species barriers, incur high human mortality, and are transmitted among humans via stuttering chains. We outline the transdisciplinary approach needed to prevent the spillover process and, therefore, future pandemics.
Assuntos
Quirópteros/virologia , Saúde Global , Infecções por Henipavirus/prevenção & controle , Henipavirus/patogenicidade , Pandemias/prevenção & controle , Viroses/prevenção & controle , Zoonoses/virologia , Animais , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/transmissão , Especificidade de Hospedeiro , Humanos , Imunidade Inata , Vírus Nipah/patogenicidade , Viroses/imunologia , Viroses/transmissão , Zoonoses/prevenção & controle , Zoonoses/transmissãoRESUMO
Meat from wildlife species (bushmeat) represents a major source of dietary protein in low- and middle-income countries where humans and wildlife live in close proximity. Despite the occurrence of zoonotic pathogens in wildlife, their prevalence in bushmeat remains unknown. To assess the risk of exposure to major pathogens in bushmeat, a total of 3784 samples, both fresh and processed, were collected from three major regions in Tanzania during both rainy and dry seasons, and were screened by real-time PCR for the presence of DNA signatures of Bacillus anthracis (B. anthracis), Brucella spp. (Brucella) and Coxiella burnetii (Coxiella). The analysis identified DNA signatures of B. anthracis (0.48%), Brucella (0.9%), and Coxiella (0.66%) in a total of 77 samples. Highest prevalence rates of B. anthracis, Brucella, and Coxiella were observed in wildebeest (56%), dik-dik (50%), and impala (24%), respectively. Fresh samples, those collected during the rainy season, and samples from Selous or Serengeti had a greater relative risk of being positive. Microbiome characterization identified Firmicutes and Proteobacteria as the most abundant phyla. The results highlight and define potential risks of exposure to endemic wildlife diseases from bushmeat and the need for future investigations to address the public health and emerging infectious disease risks associated with bushmeat harvesting, trade, and consumption.
Assuntos
Bacillus anthracis/genética , Zoonoses Bacterianas/microbiologia , Zoonoses Bacterianas/transmissão , Brucella/genética , Coxiella burnetii/genética , DNA Bacteriano/análise , Microbiologia de Alimentos , Carne/microbiologia , Animais , Animais Selvagens , Bacillus anthracis/isolamento & purificação , Zoonoses Bacterianas/prevenção & controle , Brucella/isolamento & purificação , Coxiella burnetii/isolamento & purificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Risco , Estações do Ano , TanzâniaRESUMO
Ecological restoration should be regarded as a public health service. Unfortunately, the lack of quantitative linkages between environmental and human health has limited recognition of this principle. The advent of the COVID-19 pandemic provides the impetus for further discussion. We propose ecological countermeasures as highly targeted, landscape-based interventions to arrest the drivers of land use-induced zoonotic spillover. We provide examples of ecological restoration activities that reduce zoonotic disease risk and a five-point action plan at the human-ecosystem health nexus. In conclusion, we make the case that ecological countermeasures are a tenet of restoration ecology with human health goals.
RESUMO
The rapid global spread and human health impacts of SARS-CoV-2, the virus that causes COVID-19, show humanity's vulnerability to zoonotic disease pandemics. Although anthropogenic land use change is known to be the major driver of zoonotic pathogen spillover from wildlife to human populations, the scientific underpinnings of land use-induced zoonotic spillover have rarely been investigated from the landscape perspective. We call for interdisciplinary collaborations to advance knowledge on land use implications for zoonotic disease emergence with a view toward informing the decisions needed to protect human health. In particular, we urge a mechanistic focus on the zoonotic pathogen infect-shed-spill-spread cascade to enable protection of landscape immunity-the ecological conditions that reduce the risk of pathogen spillover from reservoir hosts-as a conservation and biosecurity priority. Results are urgently needed to formulate an integrated, holistic set of science-based policy and management measures that effectively and cost-efficiently minimise zoonotic disease risk. We consider opportunities to better institute the necessary scientific collaboration, address primary technical challenges, and advance policy and management issues that warrant particular attention to effectively address health security from local to global scales.