Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 20523, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239619

RESUMO

Long-distance migration of insects impacts food security, public health, and conservation-issues that are especially significant in Africa. Windborne migration is a key strategy enabling exploitation of ephemeral havens such as the Sahel, however, its knowledge remains sparse. In this first cross-season investigation (3 years) of the aerial fauna over Africa, we sampled insects flying 40-290 m above ground in Mali, using nets mounted on tethered helium-filled balloons. Nearly half a million insects were caught, representing at least 100 families from thirteen orders. Control nets confirmed that the insects were captured at altitude. Thirteen ecologically and phylogenetically diverse species were studied in detail. Migration of all species peaked during the wet season every year across localities, suggesting regular migrations. Species differed in flight altitude, seasonality, and associated weather conditions. All taxa exhibited frequent flights on southerly winds, accounting for the recolonization of the Sahel from southern source populations. "Return" southward movement occurred in most taxa. Estimates of the seasonal number of migrants per species crossing Mali at latitude 14°N were in the trillions, and the nightly distances traversed reached hundreds of kilometers. The magnitude and diversity of windborne insect migration highlight its importance and impacts on Sahelian and neighboring ecosystems.


Assuntos
Altitude , Migração Animal/fisiologia , Biodiversidade , Insetos/fisiologia , Animais , Voo Animal/fisiologia , Geografia , Mali , Filogenia , Estações do Ano , Especificidade da Espécie
2.
Nature ; 574(7778): 404-408, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31578527

RESUMO

Over the past two decades efforts to control malaria have halved the number of cases globally, yet burdens remain high in much of Africa and the elimination of malaria has not been achieved even in areas where extreme reductions have been sustained, such as South Africa1,2. Studies seeking to understand the paradoxical persistence of malaria in areas in which surface water is absent for 3-8 months of the year have suggested that some species of Anopheles mosquito use long-distance migration3. Here we confirm this hypothesis through aerial sampling of mosquitoes at 40-290 m above ground level and provide-to our knowledge-the first evidence of windborne migration of African malaria vectors, and consequently of the pathogens that they transmit. Ten species, including the primary malaria vector Anopheles coluzzii, were identified among 235 anopheline mosquitoes that were captured during 617 nocturnal aerial collections in the Sahel of Mali. Notably, females accounted for more than 80% of all of the mosquitoes that we collected. Of these, 90% had taken a blood meal before their migration, which implies that pathogens are probably transported over long distances by migrating females. The likelihood of capturing Anopheles species increased with altitude (the height of the sampling panel above ground level) and during the wet seasons, but variation between years and localities was minimal. Simulated trajectories of mosquito flights indicated that there would be mean nightly displacements of up to 300 km for 9-h flight durations. Annually, the estimated numbers of mosquitoes at altitude that cross a 100-km line perpendicular to the prevailing wind direction included 81,000 Anopheles gambiae sensu stricto, 6 million A. coluzzii and 44 million Anopheles squamosus. These results provide compelling evidence that millions of malaria vectors that have previously fed on blood frequently migrate over hundreds of kilometres, and thus almost certainly spread malaria over these distances. The successful elimination of malaria may therefore depend on whether the sources of migrant vectors can be identified and controlled.


Assuntos
Migração Animal/fisiologia , Culicidae/fisiologia , Malária/transmissão , Mosquitos Vetores/fisiologia , Vento , África , Animais , Culicidae/parasitologia , Feminino , Mosquitos Vetores/parasitologia
3.
PLoS One ; 13(3): e0194899, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29596468

RESUMO

The poorly understood mechanisms of dry season persistence of Anopheles spp. mosquitoes through the dry season in Africa remain a critical gap in our knowledge of Plasmodium disease transmission. While it is thought that adult mosquitoes remain in a dormant state throughout this seven-month dry season, the nature of this state remains unknown and has largely not been recapitulated in laboratory settings. To elucidate possible connections of this state with microbial composition, the whole body microbiomes of adult mosquitoes in the dry and wet seasons in two locations of Mali with varying water availability were compared by sequencing the 16S ribosomal RNA gene. These locations were a village near the Niger River with year-round water sources (N'Gabakoro, "riparian"), and a typical Sahelian area with highly seasonal breeding sites (Thierola Area, "Sahelian"). The 16S bacterial data consisted of 2057 sequence variants in 426 genera across 184 families. From these data, we found several compositional differences that were seasonally and spatially linked. Counter to our initial hypothesis, there were more pronounced seasonal differences in the bacterial microbiome of riparian, rather than Sahelian areas. These seasonal shifts were primarily in Ralstonia, Sphingorhabdus, and Duganella spp. bacteria that are usually soil and water-associated, indicating these changes may be from bacteria acquired in the larval environment, rather than adulthood. In Sahelian dry season mosquitoes, there was a unique intracellular bacteria, Anaplasma, which likely was acquired through non-human blood feeding. Cytochrome B analysis of blood meals showed greater heterogeneity in host choice of An. coluzzii independent of season in the Thierola area compared to N'Gabakoro (77.5% vs. 94.6% human-origin blood meal, respectively), indicating a relaxation of anthropophily. Overall, this exploratory study provides valuable indications of spatial and seasonal differences in bacterial composition which help refine this difficult to study state.


Assuntos
Anopheles/microbiologia , Microbiota , Estações do Ano , Animais , Mali , Análise de Sequência , Fatores de Tempo
4.
Parasit Vectors ; 10(1): 621, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29282150

RESUMO

BACKGROUND: Throughout large parts of sub-Saharan Africa, seasonal malaria transmission follows mosquito density, approaching zero during the dry season and peaking during the wet season. The mechanisms by which malaria mosquitoes survive the long dry season, when no larval sites are available remain largely unknown, despite being long recognized as a critical target for vector control. Previous work in the West African Sahel has led to the hypothesis that Anopheles coluzzii (formerly M-form Anopheles gambiae) undergoes aestivation (dry-season diapause), while Anopheles gambiae (s.s.) (formerly S-form An. gambiae) and Anopheles arabiensis repopulate each wet season via long-distance migration. The environmental cues used by these species to signal the oncoming dry season have not been determined; however, studies, mostly addressing mosquitoes from temperate zones, have highlighted photoperiod and temperature as the most common token stimuli for diapause initiation. We subjected newly established colonies of An. coluzzii and An. arabiensis from the Sahel to changes in photoperiod to assess and compare their responses in terms of longevity and other relevant phenotypes. RESULTS: Our results showed that short photoperiod alone and to a lesser extent, lower nightly temperature (representing the early dry season), significantly increased longevity of An. coluzzii (by ~30%, P < 0.001) but not of An. arabiensis. Further, dry season conditions increased body size but not relative lipid content of An. coluzzii, whereas body size of An. arabiensis decreased under these conditions. CONCLUSIONS: These species-specific responses underscore the capacity of tropical anophelines to detect mild changes (~1 h) in photoperiod and thus support the role of photoperiod as a token stimulus for An. coluzzii in induction of aestivation, although, these responses fall short of a complete recapitulation of aestivation under laboratory conditions.


Assuntos
Anopheles/fisiologia , Comportamento Animal/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Mosquitos Vetores/fisiologia , África Subsaariana , Animais , Anopheles/efeitos da radiação , Exposição Ambiental , Luz , Longevidade/efeitos da radiação , Mosquitos Vetores/efeitos da radiação , Temperatura
5.
Evol Appl ; 10(7): 704-717, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28717390

RESUMO

In arid environments, the source of the malaria mosquito populations that re-establish soon after first rains remains a puzzle and alternative explanations have been proposed. Using genetic data, we evaluated whether the early rainy season (RS) population of Anopheles coluzzii is descended from the preceding late RS generation at the same locality, consistent with dry season (DS) dormancy (aestivation), or from migrants from distant locations. Distinct predictions derived from these two hypotheses were assessed, based on variation in 738 SNPs in eleven A. coluzzii samples, including seven samples spanning 2 years in a Sahelian village. As predicted by the "local origin under aestivation hypothesis," temporal samples from the late RS and those collected after the first rain of the following RS were clustered together, while larger genetic distances were found among samples spanning the RS. Likewise, multilocus genotype composition of samples from the end of the RS was similar across samples until the following RS, unlike samples that spanned the RS. Consistent with reproductive arrest during the DS, no genetic drift was detected between samples taken over that period, despite encompassing extreme population minima, whereas it was detected between samples spanning the RS. Accordingly, the variance in allele frequency increased with time over the RS, but not over the DS. However, not all the results agreed with aestivation. Large genetic distances separated samples taken a year apart, and during the first year, within-sample genetic diversity declined and increased back during the late RS, suggesting a bottleneck followed by migration. The decline of genetic diversity followed by a mass distribution of insecticide-treated nets was accompanied by a reduced mosquito density and a rise in the mutation conferring resistance to pyrethroids, indicating a bottleneck due to insecticidal selection. Overall, our results support aestivation in A. coluzzii during the DS that is accompanied by long-distance migration in the late RS.

6.
Parasit Vectors ; 10(1): 156, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28340627

RESUMO

BACKGROUND: Variation in longevity has long been of interest in vector biology because of its implication in disease transmission through vectorial capacity. Recent studies suggest that Anopheles coluzzii adults persist during the ~7 month dry season via aestivation. Recently there has been a growing body of evidence linking dietary restriction and low ratio of dietary protein to carbohydrate with extended longevity of animals. Here, we evaluated the effects of dietary restriction and the protein : carbohydrate ratio on longevity of An. coluzzii. RESULTS: In our experiment, we combined dietary regimes with temperature and relative humidity to assess their effects on An. coluzzii longevity, in an attempt to simulate aestivation under laboratory conditions. Our results showed significant effects of both the physical and the dietary variables on longevity, but that diet regimen had a considerably greater effect than those of the physical conditions. Higher temperature and lower humidity reduced longevity. At 22 °C dietary protein (blood) shortened longevity when sugar was not restricted (RH = 85%), but extended longevity when sugar was restricted (RH = 50%). CONCLUSIONS: Dietary restriction extended longevity in accord with predictions, but protein : carbohydrate ratio had a negligible effect. We identified conditions that significantly extend longevity in malaria vectors, however, the extent of increase in longevity was insufficient to simulate aestivation.


Assuntos
Anopheles/fisiologia , Métodos de Alimentação , Longevidade , Mosquitos Vetores , Ração Animal , Animais , Carboidratos/administração & dosagem , Dieta/métodos , Proteínas/administração & dosagem
7.
J Exp Biol ; 219(Pt 11): 1675-88, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27207644

RESUMO

The African malaria mosquitoes Anopheles gambiae and Anopheles coluzzii range over forests and arid areas, where they withstand dry spells and months-long dry seasons, suggesting variation in their desiccation tolerance. We subjected a laboratory colony (G3) and wild Sahelian mosquitoes during the rainy and dry seasons to desiccation assays. The thoracic spiracles and amount and composition of cuticular hydrocarbons (CHCs) of individual mosquitoes were measured to determine the effects of these traits on desiccation tolerance. The relative humidity of the assay, body water available, rate of water loss and water content at death accounted for 88% of the variation in desiccation tolerance. Spiracle size did not affect the rate of water loss or desiccation tolerance of the colony mosquitoes, as was the case for the total CHCs. However, six CHCs accounted for 71% of the variation in desiccation tolerance and three accounted for 72% of the variation in the rate of water loss. Wild A. coluzzii exhibited elevated desiccation tolerance during the dry season. During that time, relative thorax and spiracle sizes were smaller than during the rainy season. A smaller spiracle size appeared to increase A. coluzzii's desiccation tolerance, but was not statistically significant. Seasonal changes in CHC composition were detected in Sahelian A. coluzzii Stepwise regression models suggested the effect of particular CHCs on desiccation tolerance. In conclusion, the combination of particular CHCs along with the total amount of CHCs is a primary mechanism conferring desiccation tolerance in A. coluzzii, while variation in spiracle size might be a secondary mechanism.


Assuntos
Adaptação Fisiológica , Estruturas Animais/anatomia & histologia , Anopheles/anatomia & histologia , Anopheles/fisiologia , Dessecação , Hidrocarbonetos/análise , Tegumento Comum/anatomia & histologia , Animais , Água Corporal/química , Peso Corporal , Feminino , Umidade , Tamanho do Órgão , Análise de Regressão , Estações do Ano , Tórax/anatomia & histologia , Perda Insensível de Água/fisiologia , Asas de Animais/anatomia & histologia
8.
Parasit Vectors ; 7: 294, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24970701

RESUMO

BACKGROUND: Increased understanding of the dry-season survival mechanisms of Anopheles gambiae in semi-arid regions could benefit vector control efforts by identifying weak links in the transmission cycle of malaria. In this study, we examined the effect of photoperiod and relative humidity on morphologic and chemical traits known to control water loss in mosquitoes. METHODS: Anopheles gambiae body size (indexed by wing length), mesothoracic spiracle size, and cuticular hydrocarbon composition (both standardized by body size) were examined in mosquitoes raised from eggs exposed to short photoperiod and low relative humidity, simulating the dry season, or long photoperiod and high relative humidity, simulating the wet-season. RESULTS: Mosquitoes exposed to short photoperiod exhibited larger body size and larger mesothoracic spiracle length than mosquitoes exposed to long photoperiod. Mosquitoes exposed to short photoperiod and low relative humidity exhibited greater total cuticular hydrocarbon amount than mosquitoes exposed to long photoperiod and high relative humidity. In addition, total cuticular hydrocarbon amount increased with age and was higher in mated females. Mean n-alkane retention time (a measure of cuticular hydrocarbon chain length) was lower in mosquitoes exposed to short photoperiod and low relative humidity, and increased with age. Individual cuticular hydrocarbon peaks were examined, and several cuticular hydrocarbons were identified as potential biomarkers of dry- and wet-season conditions, age, and insemination status. CONCLUSIONS: Results from this study indicate that morphological and chemical changes underlie aestivation of Anopheles gambiae and may serve as biomarkers of aestivation.


Assuntos
Anopheles/anatomia & histologia , Anopheles/metabolismo , Animais , Biomarcadores , Feminino , Larva/fisiologia , Chuva , Estações do Ano
9.
Infect Genet Evol ; 28: 648-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24933461

RESUMO

The dry-season biology of malaria vectors is poorly understood, especially in arid environments when no surface waters are available for several months, such as during the dry season in the Sahel. Here we reappraise results on the dry-season physiology of members of the Anopheles gambiae s.l. complex in the broad context of dormancy in insects and especially in mosquitoes. We examine evidence on seasonal changes in reproduction, metabolism, stress tolerance, nutrition, molecular regulation, and environmental conditions and determine if the current results are compatible with dry-season diapause (aestivation) as the primary strategy for persistence throughout the dry season in the Sahel. In the process, we point out critical gaps in our knowledge that future studies can fill. We find compelling evidence that members of the An. gambiae s.l. complex undergo a form of aestivation during the Sahelian dry season by shifting energetic resources away from reproduction and towards increased longevity. Considering the differences between winter at temperate latitudes, which entails immobility of the insect and hence reliance on physiological solutions, as opposed to the Sahelian dry season, which restricts reproduction exclusively, we propose that behavioral changes play an important role in complementing physiological changes in this strategy.


Assuntos
Anopheles/fisiologia , Estações do Ano , Adaptação Biológica , África do Norte , Animais , Sinais (Psicologia) , Diapausa de Inseto/fisiologia , Metabolismo Energético , Meio Ambiente , Insetos Vetores , Malária/transmissão , Reprodução , Estresse Fisiológico
10.
Parasit Vectors ; 7: 163, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24708656

RESUMO

BACKGROUND: The African malaria mosquito, Anopheles gambiae, needs surface water in order to lay their eggs. In many parts of Africa, there are dry periods varying from days to months in length when suitable larval sites are not available and female mosquitoes experience oviposition-site deprivation (OSD). Previous studies have shown that egg-laying and egg-hatching rates were reduced due to OSD. Here, we assessed its effect on longevity and bloodfeeding rate of Anopheles gambiae. We predicted that OSD will increase mosquito longevity and the aptitude of mosquitoes to take additional blood meals; importantly, these changes will increase its vectorial capacity. METHODS: To measure the effect of OSD, four treatments were utilized: two oviposition-deprived groups, one of which was bloodfed once (OBOD) and one that was bloodfed weekly (MBOD); a non-oviposition-deprived, weekly bloodfed control group (MBC); and a blood-deprived age-control group (BD). Mortality was assessed daily and bloodfeeding rate was measured at weekly intervals. RESULTS: Under OSD, survival of female A. gambiae was reduced by 10-20%, reflecting reduction of the MBOD and OBOD groups from the MBC group, respectively. Likewise, bloodfeeding response during three weeks of OSD was reduced but the reduction varied as a function of time from the last blood meal. CONCLUSIONS: These results indicate that OSD is expected to reduce A. gambiae vectorial capacity and that OSD alone does not act as cue used by female mosquitoes to switch into a dormant state of extended survivorship with reproductive quiescence.


Assuntos
Anopheles/fisiologia , Sangue , Comportamento Alimentar/fisiologia , Longevidade/fisiologia , Oviposição/fisiologia , Animais , Feminino
11.
Parasit Vectors ; 5: 235, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23072301

RESUMO

BACKGROUND: The African malaria mosquito, Anopheles gambiae, depends on availability of suitable surface water for oviposition. Short and long dry spells occur throughout the year in many parts of its range that limit its access to oviposition sites. Although not well understood, oviposition-site deprivation has been found to rapidly reduce egg batch size and hatch rate of several mosquito species. We conducted laboratory experiments to assess these effects of oviposition-site deprivation on An. gambiae and to evaluate the role of nutrition and sperm viability as mediators of these effects. METHODS: Anopheles gambiae adults (1-2 d old) from the G3 laboratory colony were assigned to the following treatment groups: oviposition-deprived (fed once and then deprived of oviposition site for 7 or 14 d), multiple-fed control (fed regularly once a week and allowed to lay eggs without delay), and age matched blood-deprived control (fed once, three days before water for oviposition was provided). Egg batch size and hatch rate were measured. In the second experiment two additional treatment groups were included: oviposition-deprived females that received either a second (supplemental) blood meal or virgin males (supplemental mating) 4 days prior to receiving water for oviposition. RESULTS: An. gambiae was highly sensitive to oviposition-site deprivation. Egg batch size dropped sharply to 0-3.5 egg/female within 14 days, due to reduced oviposition rate rather than a reduced number of eggs/batch. Egg hatch rate also fell dramatically to 0-2% within 7 days. The frequency of brown eggs that fail to tan was elevated. A supplemental blood meal, but not 'supplemental insemination,' recovered the oviposition rate of females subjected to oviposition-site deprivation. Similarly, a supplemental blood meal, but not 'supplemental insemination,' partly recovered hatch rate, but this increase was marginally significant (P < 0.069). CONCLUSIONS: Even a short dry spell resulting in oviposition-site deprivation for several days may result in a dramatic decline of An. gambiae populations via reduced fecundity and fertility. However, females taking supplemental blood meals regain at least some reproductive success. If mosquitoes subjected to oviposition-site deprivation increase the frequency of blood feeding, malaria transmission may even increase during a short dry spell. The relevance of oviposition-site deprivation as a cue to alter the physiology of An. gambiae during the long dry season is not evident from these results because no reduction in hatch rate was evident in wild M-form An. gambiae collected in the dry season in the Sahel by previous studies.


Assuntos
Anopheles/fisiologia , Ecossistema , Fertilidade , Animais , Sobrevivência Celular , Feminino , Masculino , Oviposição , Reprodução , Espermatozoides/fisiologia
12.
J Exp Biol ; 215(Pt 12): 2013-21, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22623189

RESUMO

Malaria in Africa is vectored primarily by the Anopheles gambiae complex. Although the mechanisms of population persistence during the dry season are not yet known, targeting dry season mosquitoes could provide opportunities for vector control. In the Sahel, it appears likely that M-form A. gambiae survive by aestivation (entering a dormant state). To assess the role of eco-physiological changes associated with dry season survival, we measured body size, flight activity and metabolic rate of wild-caught mosquitoes throughout 1 year in a Sahelian locality, far from permanent water sources, and at a riparian location adjacent to the Niger River. We found significant seasonal variation in body size at both the Sahelian and riparian sites, although the magnitude of the variation was greater in the Sahel. For flight activity, significant seasonality was only observed in the Sahel, with increased flight activity in the wet season when compared with that just prior to and throughout the dry season. Whole-organism metabolic rate was affected by numerous biotic and abiotic factors, and a significant seasonal component was found at both locations. However, assay temperature accounted completely for seasonality at the riparian location, while significant seasonal variation remained after accounting for all measured variables in the Sahel. Interestingly, we did not find that mean metabolic rate was lowest during the dry season at either location, contrary to our expectation that mosquitoes would conserve energy and increase longevity by reducing metabolism during this time. These results indicate that mosquitoes may use mechanisms besides reduced metabolic rate to enable survival during the Sahelian dry season.


Assuntos
Anopheles/anatomia & histologia , Anopheles/fisiologia , Malária/parasitologia , África , Animais , Metabolismo Basal , Tamanho Corporal , Voo Animal , Estações do Ano , Temperatura
13.
PLoS One ; 7(4): e34624, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558093

RESUMO

Bacillus thuringiensis (Bt) crystal (Cry) proteins are effective against a select number of insect pests, but improvements are needed to increase efficacy and decrease time to mortality for coleopteran pests. To gain insight into the Bt intoxication process in Coleoptera, we performed RNA-Seq on cDNA generated from the guts of Tenebrio molitor larvae that consumed either a control diet or a diet containing Cry3Aa protoxin. Approximately 134,090 and 124,287 sequence reads from the control and Cry3Aa-treated groups were assembled into 1,318 and 1,140 contigs, respectively. Enrichment analyses indicated that functions associated with mitochondrial respiration, signalling, maintenance of cell structure, membrane integrity, protein recycling/synthesis, and glycosyl hydrolases were significantly increased in Cry3Aa-treated larvae, whereas functions associated with many metabolic processes were reduced, especially glycolysis, tricarboxylic acid cycle, and fatty acid synthesis. Microarray analysis was used to evaluate temporal changes in gene expression after 6, 12 or 24 h of Cry3Aa exposure. Overall, microarray analysis indicated that transcripts related to allergens, chitin-binding proteins, glycosyl hydrolases, and tubulins were induced, and those related to immunity and metabolism were repressed in Cry3Aa-intoxicated larvae. The 24 h microarray data validated most of the RNA-Seq data. Of the three intoxication intervals, larvae demonstrated more differential expression of transcripts after 12 h exposure to Cry3Aa. Gene expression examined by three different methods in control vs. Cry3Aa-treated larvae at the 24 h time point indicated that transcripts encoding proteins with chitin-binding domain 3 were the most differentially expressed in Cry3Aa-intoxicated larvae. Overall, the data suggest that T. molitor larvae mount a complex response to Cry3Aa during the initial 24 h of intoxication. Data from this study represent the largest genetic sequence dataset for T. molitor to date. Furthermore, the methods in this study are useful for comparative analyses in organisms lacking a sequenced genome.


Assuntos
Proteínas de Bactérias/toxicidade , Vias Biossintéticas/efeitos dos fármacos , Endotoxinas/toxicidade , Metabolismo Energético/efeitos dos fármacos , Proteínas Hemolisinas/toxicidade , Tenebrio/efeitos dos fármacos , Tenebrio/metabolismo , Transcriptoma/efeitos dos fármacos , Administração Oral , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/administração & dosagem , Sequência de Bases , DNA Complementar/genética , Endotoxinas/administração & dosagem , Perfilação da Expressão Gênica , Proteínas Hemolisinas/administração & dosagem , Larva/efeitos dos fármacos , Larva/metabolismo , Análise em Microsséries , Dados de Sequência Molecular , Análise de Sequência de DNA , Tenebrio/genética , Fatores de Tempo
14.
J Insect Physiol ; 58(8): 1050-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22609421

RESUMO

The African malaria mosquito, Anopheles gambiae, is widespread south of the Sahara including in dry savannahs and semi-arid environments where no surface water exists for several months a year. Adults of the M form of An. gambiae persist through the long dry season, when no surface waters are available, by increasing their maximal survival from 4 weeks to 7 months. Dry season diapause (aestivation) presumably underlies this extended survival. Diapause in adult insects is intrinsically linked to depressed reproduction. To determine if reproduction of the Sahelian M form is depressed during the dry season, we assessed seasonal changes in oviposition, egg batch size, and egg development, as well as insemination rate and blood feeding in wild caught mosquitoes. Results from xeric Sahelian and riparian populations were compared. Oviposition response in the Sahelian M form dropped from 70% during the wet season to 20% during the dry season while the mean egg batch size among those that laid eggs fell from 173 to 101. Correspondingly, the fraction of females that exhibited gonotrophic dissociation increased over the dry season from 5% to 45%, while a similar fraction of the population retained developed eggs despite having access to water. This depression in reproduction the Sahelian M form was not caused by a reduced insemination rate. Seasonal variation in these reproductive parameters of the riparian M form population was less extreme and the duration of reproductive depression was shorter. Blood feeding responses did not change with the season in either population. Depressed reproduction during the dry season in the Sahelian M form of An. gambiae provides additional evidence for aestivation and illuminates the physiological processes involved. The differences between the Sahelian and riparian population suggest an adaptive cline in aestivation phenotypes between populations only 130 km apart.


Assuntos
Anopheles/fisiologia , Oviposição , África do Norte , Animais , Regulação para Baixo , Ecossistema , Feminino , Masculino , Estações do Ano
15.
Malar J ; 10: 151, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21645385

RESUMO

BACKGROUND: Persistence of African anophelines throughout the long dry season (4-8 months) when no surface waters are available remains one of the enduring mysteries of medical entomology. Recent studies demonstrated that aestivation (summer diapause) is one mechanism that allows the African malaria mosquito, Anopheles gambiae, to persist in the Sahel. However, migration from distant localities - where reproduction continues year-round - might also be involved. METHODS: To assess the contribution of aestivating adults to the buildup of populations in the subsequent wet season, two villages subjected to weekly pyrethrum sprays throughout the dry season were compared with two nearby villages, which were only monitored. If aestivating adults are the main source of the subsequent wet-season population, then the subsequent wet-season density in the treated villages will be lower than in the control villages. Moreover, since virtually only M-form An. gambiae are found during the dry season, the reduction should be specific to the M form, whereas no such difference is predicted for S-form An. gambiae or Anopheles arabiensis. On the other hand, if migrants arriving with the first rain are the main source, no differences between treated and control villages are expected across all members of the An. gambiae complex. RESULTS: The wet-season density of the M form in treated villages was 30% lower than that in the control (P < 10-4, permutation test), whereas no significant differences were detected in the S form or An. arabiensis. CONCLUSIONS: These results support the hypothesis that the M form persist in the arid Sahel primarily by aestivation, whereas the S form and An. arabiensis rely on migration from distant locations. Implications for malaria control are discussed.


Assuntos
Anopheles/fisiologia , Clima Desértico , Estações do Ano , África Subsaariana , Migração Animal , Animais , Anopheles/crescimento & desenvolvimento , Feminino , Humanos , Masculino
16.
BMC Evol Biol ; 11: 184, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21711542

RESUMO

BACKGROUND: Anopheles gambiae mates in flight at particular mating sites over specific landmarks known as swarm markers. The swarms are composed of males; females typically approach a swarm, and leave in copula. This mating aggregation looks like a lek, but appears to lack the component of female choice. To investigate the possible mechanisms promoting the evolution of swarming in this mosquito species, we looked at the variation in mating success between swarms and discussed the factors that structure it in light of the three major lekking models, known as the female preference model, the hotspot model, and the hotshot model. RESULTS: We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the per capita mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site. CONCLUSIONS: Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of An. gambiae and discussed possible factors that account for its variation. We found that swarms of An. gambiae conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the An. gambiae mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble mating competition.


Assuntos
Anopheles/fisiologia , Comportamento Sexual Animal , Animais , Anopheles/genética , Comportamento Animal , Feminino , Masculino
17.
J Exp Biol ; 214(Pt 14): 2345-53, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21697426

RESUMO

In the Sahel, the Anopheles gambiae complex consists of Anopheles arabiensis and the M and S molecular forms of A. gambiae sensu stricto. However, the composition of these malaria vectors varies spatially and temporally throughout the region and is thought to be linked to environmental factors such as rainfall, larval site characteristics and duration of the dry season. To examine possible physiological divergence between these taxa, we measured metabolic rates of mosquitoes during the wet season in a Sahelian village in Mali. To our knowledge, this study provides the first measurements of metabolic rates of A. gambiae and A. arabiensis in the field. The mean metabolic rate of A. arabiensis was higher than that of M-form A. gambiae when accounting for the effects of female gonotrophic status, temperature and flight activity. However, after accounting for their difference in body size, no significant difference in metabolic rate was found between these two species (whilst all other factors were found to be significant). Thus, body size may be a key character that has diverged in response to ecological differences between these two species. Alternatively, these species may display additional differences in metabolic rate only during the dry season. Overall, our results indicate that changes in behavior and feeding activity provide an effective mechanism for mosquitoes to reduce their metabolic rate, and provide insight into the possible strategies employed by aestivating individuals during the dry season. We hypothesize that female mosquitoes switch to sugar feeding while in dormancy because of elevated metabolism associated with blood digestion.


Assuntos
Anopheles/metabolismo , Metabolismo Basal , População Rural , Análise de Variância , Animais , Anopheles/anatomia & histologia , Anopheles/classificação , Tamanho Corporal , Metabolismo Energético/fisiologia , Feminino , Masculino , Mali , Especificidade da Espécie , Asas de Animais/anatomia & histologia
18.
Mol Biol Evol ; 28(1): 423-35, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20805188

RESUMO

Two of the most well-supported patterns to have emerged over the past two decades of research in evolutionary biology are the occurrence of divergent natural selection acting on many male and female reproductive tract proteins and the importance of postmating, prezygotic phenotypes in reproductively isolating closely related species. Although these patterns appear to be common across a wide variety of taxa, the link between them remains poorly documented. Here, we utilize comparative proteomic techniques to determine whether or not there is evidence for natural selection acting on the ejaculate proteomes of two cricket species (Allonemobius fasciatus and A. socius) which are reproductively isolated primarily by postmating, prezygotic phenotypes. In addressing this question, we compare the degree of within-species polymorphism and between-species divergence between the ejaculate and thorax proteomes of these two species. We found that the ejaculate proteomes are both less polymorphic and more divergent than the thorax proteomes. Additionally, we assessed patterns of nucleotide variation for two species-specific ejaculate proteins and found evidence for both reduced levels of variation within species and positive selection driving divergence between species. In contrast, non-species-specific proteins exhibited higher levels of within-species nucleotide variation and no signatures of positive selection. Nucleotide and putative functional data for the two species-specific proteins, along with data for a third protein (ejaculate serine protease), suggest that all three of these genes are candidate speciation genes in need of further study. Overall, these patterns of proteome and nucleotide divergence provide support for the hypothesis that there is a causative link between selection-driven divergence of male ejaculate proteins and the evolution of postmating, prezygotic barriers to gene flow within Allonemobius.


Assuntos
Evolução Biológica , Gryllidae/genética , Proteoma/análise , Proteômica/métodos , Reprodução/genética , Seleção Genética , Sêmen/química , Animais , Sequência de Bases , Feminino , Variação Genética , Gryllidae/fisiologia , Proteínas de Insetos/análise , Proteínas de Insetos/genética , Masculino , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Fenótipo , Especificidade da Espécie
19.
PLoS One ; 4(10): e7537, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19851502

RESUMO

Postmating, prezygotic phenotypes, especially those that underlie reproductive isolation between closely related species, have been a central focus of evolutionary biologists over the past two decades. Such phenotypes are thought to evolve rapidly and be nearly ubiquitous among sexually reproducing eukaryotes where females mate with multiple partners. Because these phenotypes represent interplay between the male ejaculate and female reproductive tract, they are fertile ground for reproductive senescence--as ejaculate composition and female physiology typically change over an individual's life span. Although these phenotypes and their resulting dynamics are important, we have little understanding of the proteins that mediate these phenotypes, particularly for species groups where postmating, prezygotic traits are the primary mechanism of reproductive isolation. Here, we utilize proteomics, RNAi, mating experiments, and the Allonemobius socius complex of crickets, whose members are primarily isolated from one another by postmating, prezygotic phenotypes (including the ability of a male to induce a female to lay eggs), to demonstrate that one of the most abundant ejaculate proteins (a male accessory gland-biased protein similar to a trypsin-like serine protease) decreases in abundance over a male's reproductive lifetime and mediates the induction of egg-laying in females. These findings represent one of the first studies to identify a protein that plays a role in mediating both a postmating, prezygotic isolation pathway and reproductive senescence.


Assuntos
Interferência de RNA , Sêmen/metabolismo , Comportamento Sexual Animal , Sequência de Aminoácidos , Animais , Senescência Celular , Etiquetas de Sequências Expressas , Feminino , Gryllidae , Masculino , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Fenótipo , Reprodução , Espermatozoides/metabolismo , Fatores de Tempo
20.
BMC Evol Biol ; 9: 113, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19460149

RESUMO

BACKGROUND: Geographic clines within species are often interpreted as evidence of adaptation to varying environmental conditions. However, clines can also result from genetic drift, and these competing hypotheses must therefore be tested empirically. The striped ground cricket, Allonemobius socius, is widely-distributed in the eastern United States, and clines have been documented in both life-history traits and genetic alleles. One clinally-distributed locus, isocitrate dehydrogenase (Idh-1), has been shown previously to exhibit significant correlations between allele frequencies and environmental conditions (temperature and rainfall). Further, an empirical study revealed a significant genotype-by-environmental interaction (GxE) between Idh-1 genotype and temperature which affected fitness. Here, we use enzyme kinetics to further explore GxE between Idh-1 genotype and temperature, and test the predictions of kinetic activity expected under drift or selection. RESULTS: We found significant GxE between temperature and three enzyme kinetic parameters, providing further evidence that the natural distributions of Idh-1 allele frequencies in A. socius are maintained by natural selection. Differences in enzyme kinetic activity across temperatures also mirror many of the geographic patterns observed in allele frequencies. CONCLUSION: This study further supports the hypothesis that the natural distribution of Idh-1 alleles in A. socius is driven by natural selection on differential enzymatic performance. This example is one of several which clearly document a functional basis for both the maintenance of common alleles and observed clines in allele frequencies, and provides further evidence for the non-neutrality of some allozyme alleles.


Assuntos
Gryllidae/genética , Isocitrato Desidrogenase/genética , Seleção Genética , Temperatura , Adaptação Fisiológica/genética , Animais , Meio Ambiente , Frequência do Gene , Genes de Insetos , Deriva Genética , Genótipo , Geografia , Gryllidae/enzimologia , Isocitrato Desidrogenase/metabolismo , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...