RESUMO
The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression. Still, it is unknown if the release of P-TEFb from SECs is a viable latency reversal strategy. Here, we demonstrate that the SEC is not required for HIV-1 replication in primary CD4+ T cells and that a small molecular inhibitor of the P-TEFb/SEC interaction (termed KL-2) increases viral transcription. KL-2 acts synergistically with other latency reversing agents (LRAs) to reactivate viral transcription in several cell line models of latency in a manner that is, at least in part, dependent on the viral Tat protein. Finally, we demonstrate that KL-2 enhances viral reactivation in peripheral blood mononuclear cells (PBMCs) from people living with HIV (PLWH) on suppressive ART, most notably in combination with inhibitor of apoptosis protein antagonists (IAPi). Taken together, these results suggest that the release of P-TEFb from cellular SECs may be a novel route for HIV-1 latency reactivation.
Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , HIV-1 , Fator B de Elongação Transcricional Positiva , Latência Viral , HIV-1/fisiologia , HIV-1/genética , Humanos , Latência Viral/fisiologia , Latência Viral/efeitos dos fármacos , Fator B de Elongação Transcricional Positiva/metabolismo , Infecções por HIV/virologia , Infecções por HIV/metabolismo , Infecções por HIV/tratamento farmacológico , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD4-Positivos/metabolismo , Ativação Viral/efeitos dos fármacos , Replicação Viral , Regulação Viral da Expressão GênicaRESUMO
The evolution of T cell molecular signatures in the distal lung of patients with severe pneumonia is understudied. Here, we analyzed T cell subsets in longitudinal bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia, including unvaccinated patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or with respiratory failure not linked to pneumonia. In patients with SARS-CoV-2 pneumonia, activation of interferon signaling pathways, low activation of the NF-κB pathway and preferential targeting of spike and nucleocapsid proteins early after intubation were associated with favorable outcomes, whereas loss of interferon signaling, activation of NF-κB-driven programs and specificity for the ORF1ab complex late in disease were associated with mortality. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize individuals who recover, whereas responses against nonstructural proteins and activation of NF-κB are associated with poor outcomes.
Assuntos
COVID-19 , NF-kappa B , SARS-CoV-2 , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Idoso , Líquido da Lavagem Broncoalveolar/imunologia , Adulto , Transdução de Sinais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Interferons/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologiaRESUMO
Severe coronavirus disease 2019 and post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are associated with neurological complications that may be linked to direct infection of the central nervous system (CNS), but the selective pressures ruling neuroinvasion are poorly defined. Here we assessed SARS-CoV-2 evolution in the lung versus CNS of infected mice. Higher levels of viral divergence were observed in the CNS than the lung after intranasal challenge with a high frequency of mutations in the spike furin cleavage site (FCS). Deletion of the FCS significantly attenuated virulence after intranasal challenge, with lower viral titres and decreased morbidity compared with the wild-type virus. Intracranial inoculation of the FCS-deleted virus, however, was sufficient to restore virulence. After intracranial inoculation, both viruses established infection in the lung, but dissemination from the CNS to the lung required the intact FCS. Cumulatively, these data suggest a critical role for the FCS in determining SARS-CoV-2 tropism and compartmentalization.
Assuntos
COVID-19 , Sistema Nervoso Central , Pulmão , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Tropismo Viral , Animais , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Camundongos , COVID-19/virologia , Pulmão/virologia , Pulmão/patologia , Sistema Nervoso Central/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Furina/metabolismo , Furina/genética , Virulência , Humanos , Mutação , Evolução Molecular , Feminino , Modelos Animais de DoençasRESUMO
Neonatal health is dependent on early risk stratification, diagnosis, and timely management of potentially devastating conditions, particularly in the setting of prematurity. Many of these conditions are poorly predicted in real-time by clinical data and current diagnostics. Umbilical cord blood may represent a novel source of molecular signatures that provides a window into the state of the fetus at birth. In this study, we comprehensively characterized the cord blood proteome of infants born between 24 to 42 weeks using untargeted mass spectrometry and functional enrichment analysis. We determined that the cord blood proteome at birth varies significantly across gestational development. Proteins that function in structural development and growth (e.g., extracellular matrix organization, lipid particle remodeling, and blood vessel development) are more abundant earlier in gestation. In later gestations, proteins with increased abundance are in immune response and inflammatory pathways, including complements and calcium-binding proteins. Furthermore, these data contribute to the knowledge of the physiologic state of neonates across gestational age, which is crucial to understand as we strive to best support postnatal development in preterm infants, determine mechanisms of pathology causing adverse health outcomes, and develop cord blood biomarkers to help tailor our diagnosis and therapeutics for critical neonatal conditions.
RESUMO
Defining the subset of cellular factors governing SARS-CoV-2 replication can provide critical insights into viral pathogenesis and identify targets for host-directed antiviral therapies. While a number of genetic screens have previously reported SARS-CoV-2 host dependency factors, these approaches relied on utilizing pooled genome-scale CRISPR libraries, which are biased towards the discovery of host proteins impacting early stages of viral replication. To identify host factors involved throughout the SARS-CoV-2 infectious cycle, we conducted an arrayed genome-scale siRNA screen. Resulting data were integrated with published datasets to reveal pathways supported by orthogonal datasets, including transcriptional regulation, epigenetic modifications, and MAPK signalling. The identified proviral host factors were mapped into the SARS-CoV-2 infectious cycle, including 27 proteins that were determined to impact assembly and release. Additionally, a subset of proteins were tested across other coronaviruses revealing 17 potential pan-coronavirus targets. Further studies illuminated a role for the heparan sulfate proteoglycan perlecan in SARS-CoV-2 viral entry, and found that inhibition of the non-canonical NF-kB pathway through targeting of BIRC2 restricts SARS-CoV-2 replication both in vitro and in vivo. These studies provide critical insight into the landscape of virus-host interactions driving SARS-CoV-2 replication as well as valuable targets for host-directed antivirals.
RESUMO
Systemic lupus erythematosus (SLE) is prototypical autoimmune disease driven by pathological T cell-B cell interactions1,2. Expansion of T follicular helper (TFH) and T peripheral helper (TPH) cells, two T cell populations that provide help to B cells, is a prominent feature of SLE3,4. Human TFH and TPH cells characteristically produce high levels of the B cell chemoattractant CXCL13 (refs. 5,6), yet regulation of T cell CXCL13 production and the relationship between CXCL13+ T cells and other T cell states remains unclear. Here, we identify an imbalance in CD4+ T cell phenotypes in patients with SLE, with expansion of PD-1+/ICOS+ CXCL13+ T cells and reduction of CD96hi IL-22+ T cells. Using CRISPR screens, we identify the aryl hydrocarbon receptor (AHR) as a potent negative regulator of CXCL13 production by human CD4+ T cells. Transcriptomic, epigenetic and functional studies demonstrate that AHR coordinates with AP-1 family member JUN to prevent CXCL13+ TPH/TFH cell differentiation and promote an IL-22+ phenotype. Type I interferon, a pathogenic driver of SLE7, opposes AHR and JUN to promote T cell production of CXCL13. These results place CXCL13+ TPH/TFH cells on a polarization axis opposite from T helper 22 (TH22) cells and reveal AHR, JUN and interferon as key regulators of these divergent T cell states.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linfócitos T CD4-Positivos , Quimiocina CXCL13 , Interferon Tipo I , Lúpus Eritematoso Sistêmico , Proteínas Proto-Oncogênicas c-jun , Receptores de Hidrocarboneto Arílico , Feminino , Humanos , Masculino , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular , Quimiocina CXCL13/metabolismo , Epigenômica , Perfilação da Expressão Gênica , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interleucina 22/imunologia , Interleucina 22/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismoRESUMO
Neurotropic alphaherpesviruses, including herpes simplex virus type 1 and pseudorabies virus, establish a lifelong presence within the peripheral nervous system of their mammalian hosts. Upon entering cells, two conserved tegument proteins, pUL36 and pUL37, traffic DNA-containing capsids to nuclei. These proteins support long-distance retrograde axonal transport and invasion of the nervous system in vivo. To better understand how pUL36 and pUL37 function, recombinant viral particles carrying BioID2 fused to these proteins were produced to biotinylate cellular proteins in their proximity (<10 nm) during infection. Eighty-six high-confidence host proteins were identified by mass spectrometry and subsequently targeted by CRISPR-Cas9 gene editing to assess their contributions to early infection. Proteins were identified that both supported and antagonized infection in immortalized human epithelial cells. The latter included zyxin, a protein that localizes to focal adhesions and regulates actin cytoskeletal dynamics. Zyxin knockout cells were hyper-permissive to infection and could be rescued with even modest expression of GFP-zyxin. These results provide a resource for studies of the virus-cell interface and identify zyxin as a novel deterrent to alphaherpesvirus infection.IMPORTANCENeuroinvasive alphaherpesviruses are highly prevalent with many members found across mammals [e.g., herpes simplex virus type 1 (HSV-1) in humans and pseudorabies virus in pigs]. HSV-1 causes a range of clinical manifestations from cold sores to blindness and encephalitis. There are no vaccines or curative therapies available for HSV-1. A fundamental feature of these viruses is their establishment of lifelong infection of the nervous system in their respective hosts. This outcome is possible due to a potent neuroinvasive property that is coordinated by two proteins: pUL36 and pUL37. In this study, we explore the cellular protein network in proximity to pUL36 and pUL37 during infection and examine the impact of knocking down the expression of these proteins upon infection.
Assuntos
Biotina , Humanos , Biotina/metabolismo , Zixina/metabolismo , Zixina/genética , Animais , Linhagem Celular , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/fisiologia , Interações Hospedeiro-Patógeno , Alphaherpesvirinae/genética , Alphaherpesvirinae/metabolismo , Sistemas CRISPR-Cas , Células Epiteliais/virologia , Células Epiteliais/metabolismoRESUMO
Background: Inpatient behavioral health units (BHUs) had unique challenges in implementing interventions to mitigate coronavirus disease 2019 (COVID-19) transmission, in part due to socialization in BHU settings. The objective of this study was to identify the transmission routes and the efficacy of the mitigation strategies employed during a COVID-19 outbreak in an inpatient BHU during the Omicron surge from December 2021 to January 2022. Methods: An outbreak investigation was performed after identifying 2 COVID-19-positive BHU inpatients on December 16 and 20, 2021. Mitigation measures involved weekly point prevalence testing for all inpatients, healthcare workers (HCWs), and staff, followed by infection prevention mitigation measures and molecular surveillance. Whole-genome sequencing on a subset of COVID-19-positive individuals was performed to identify the outbreak source. Finally, an outbreak control sustainability plan was formulated for future BHU outbreak resurgences. Results: We identified 35 HCWs and 8 inpatients who tested positive in the BHU between December 16, 2021, and January 17, 2022. We generated severe acute respiratory coronavirus virus 2 (SARS-CoV-2) genomes from 15 HCWs and all inpatients. Phylogenetic analyses revealed 3 distinct but genetically related clusters: (1) an HCW and inpatient outbreak likely initiated by staff, (2) an HCW and inpatient outbreak likely initiated by an inpatient visitor, and (3) an HCW-only cluster initiated by staff. Conclusions: Distinct transmission clusters are consistent with multiple, independent SARS-CoV-2 introductions with further inpatient transmission occurring in communal settings. The implemented outbreak control plan comprised of enhanced personal protective equipment requirements, limited socialization, and molecular surveillance likely minimized disruptions to patient care as a model for future pandemics.
RESUMO
Respiratory Syncytial Virus (RSV) is a leading cause of acute respiratory tract infection, with the greatest impact on infants, immunocompromised individuals, and older adults. RSV prevalence decreased substantially in the United States (US) following the implementation of COVID-19-related non-pharmaceutical interventions but later rebounded with abnormal seasonality. The biological and epidemiological factors underlying this altered behavior remain poorly defined. In this retrospective cohort study from 2009 to 2023 in Chicago, Illinois, US, we examined RSV epidemiology, clinical severity, and genetic diversity. We found that changes in RSV diagnostic platforms drove increased detections in outpatient settings post-2020 and that hospitalized adults infected with RSV-A were at higher risk of intensive care admission than those with RSV-B. While population structures of RSV-A remained unchanged, RSV-B exhibited a genetic shift into geographically distinct clusters. Mutations in the antigenic regions of the fusion protein suggest convergent evolution with potential implications for vaccine and therapeutic development.
Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Lactente , Humanos , Estados Unidos/epidemiologia , Idoso , Estudos Retrospectivos , Pandemias , COVID-19/epidemiologia , Vírus Sincicial Respiratório Humano/genéticaRESUMO
The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression. Still, it is unknown if the release of P-TEFb from SECs is a viable latency reversal strategy. Here, we demonstrate that the SEC is not required for HIV-1 replication in primary CD4+ T cells and that a small molecular inhibitor of the P-TEFb/SEC interaction (termed KL-2) increases viral transcription. KL-2 acts synergistically with other latency reversing agents (LRAs) to reactivate viral transcription in several cell line models of latency in a manner that is, at least in part, dependent on the viral Tat protein. Finally, we demonstrate that KL-2 enhances viral reactivation in peripheral blood mononuclear cells (PBMCs) from people living with HIV on suppressive ART, most notably in combination with inhibitor of apoptosis protein antagonists (IAPi). Taken together, these results suggest that the release of P-TEFb from cellular SECs may be a novel route for HIV-1 latency reactivation.
RESUMO
SARS-CoV-2 has claimed several million lives since its emergence in late 2019. The ongoing evolution of the virus has resulted in the periodic emergence of new viral variants with distinct fitness advantages, including enhanced transmission and immune escape. While several SARS-CoV-2 variants of concern trace their origins back to the African continent-including Beta, Eta, and Omicron-most countries in Africa remain under-sampled in global genomic surveillance efforts. In an effort to begin filling these knowledge gaps, we conducted retrospective viral genomic surveillance in Guinea from October 2020 to August 2021. We found that SARS-CoV-2 clades 20A, 20B, and 20C dominated throughout 2020 until the coincident emergence of the Alpha and Eta variants of concern in January 2021. The Alpha variant remained dominant throughout early 2021 until the arrival of the Delta variant in July. Surprisingly, despite the small sample size of our study, we also found the persistence of the early SARS-CoV-2 clade 19B as late as April 2021. Together, these data help fill in our understanding of the SARS-CoV-2 population dynamics in West Africa early in the COVID-19 pandemic.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Guiné/epidemiologia , SARS-CoV-2/genética , Pandemias , Estudos Retrospectivos , COVID-19/epidemiologia , África Ocidental/epidemiologia , GenômicaRESUMO
During HIV infection of CD4+ T cells, ubiquitin pathways are essential to viral replication and host innate immune response; however, the role of specific E3 ubiquitin ligases is not well understood. Proteomics analyses identified 116 single-subunit E3 ubiquitin ligases expressed in activated primary human CD4+ T cells. Using a CRISPR-based arrayed spreading infectivity assay, we systematically knocked out 116 E3s from activated primary CD4+ T cells and infected them with NL4-3 GFP reporter HIV-1. We found 10 E3s significantly positively or negatively affected HIV infection in activated primary CD4+ T cells, including UHRF1 (pro-viral) and TRAF2 (anti-viral). Furthermore, deletion of either TRAF2 or UHRF1 in three JLat models of latency spontaneously increased HIV transcription. To verify this effect, we developed a CRISPR-compatible resting primary human CD4+ T cell model of latency. Using this system, we found that deletion of TRAF2 or UHRF1 initiated latency reactivation and increased virus production from primary human resting CD4+ T cells, suggesting these two E3s represent promising targets for future HIV latency reversal strategies. IMPORTANCE: HIV, the virus that causes AIDS, heavily relies on the machinery of human cells to infect and replicate. Our study focuses on the host cell's ubiquitination system which is crucial for numerous cellular processes. Many pathogens, including HIV, exploit this system to enhance their own replication and survival. E3 proteins are part of the ubiquitination pathway that are useful drug targets for host-directed therapies. We interrogated the 116 E3s found in human immune cells known as CD4+ T cells, since these are the target cells infected by HIV. Using CRISPR, a gene-editing tool, we individually removed each of these enzymes and observed the impact on HIV infection in human CD4+ T cells isolated from healthy donors. We discovered that 10 of the E3 enzymes had a significant effect on HIV infection. Two of them, TRAF2 and UHRF1, modulated HIV activity within the cells and triggered an increased release of HIV from previously dormant or "latent" cells in a new primary T cell assay. This finding could guide strategies to perturb hidden HIV reservoirs, a major hurdle to curing HIV. Our study offers insights into HIV-host interactions, identifies new factors that influence HIV infection in immune cells, and introduces a novel methodology for studying HIV infection and latency in human immune cells.
Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Infecções por HIV , HIV , Fator 2 Associado a Receptor de TNF , Ubiquitina-Proteína Ligases , Latência Viral , Humanos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linfócitos T CD4-Positivos , Sistemas CRISPR-Cas , Fator 2 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Replicação Viral , HIV/fisiologiaRESUMO
SARS-CoV-2 nsp13 helicase is an essential enzyme for viral replication and a promising target for antiviral drug development. This study compares the double-stranded RNA (dsRNA) unwinding activity of nsp13 and the Omicron nsp13R392C variant, which is predominant in currently circulating lineages. Using in vitro gel- and fluorescence-based assays, we found that both nsp13 and nsp13R392C have dsRNA unwinding activity with equivalent kinetics. Furthermore, the R392C mutation had no effect on the efficiency of the nsp13-specific helicase inhibitor SSYA10-001. We additionally confirmed the activity of several other helicase inhibitors against nsp13, including punicalagin that inhibited dsRNA unwinding at nanomolar concentrations. Overall, this study reveals the utility of using dsRNA unwinding assays to screen small molecules for antiviral activity against nsp13 and the Omicron nsp13R392C variant. Continual monitoring of newly emergent variants will be essential for considering resistance profiles of lead compounds as they are advanced towards next-generation therapeutic development.
Assuntos
Antivirais , Metiltransferases , SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Antivirais/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Humanos , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Mutação/genética , RNA Viral/genética , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , RNA Helicases/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , COVID-19/virologiaRESUMO
Most mammalian cells prevent viral infection and proliferation by expressing various restriction factors and sensors that activate the immune system. Several host restriction factors that inhibit human immunodeficiency virus type 1 (HIV-1) have been identified, but most of them are antagonized by viral proteins. Here, we describe CCHC-type zinc-finger-containing protein 3 (ZCCHC3) as a novel HIV-1 restriction factor that suppresses the production of HIV-1 and other retroviruses, but does not appear to be directly antagonized by viral proteins. It acts by binding to Gag nucleocapsid (GagNC) via zinc-finger motifs, which inhibits viral genome recruitment and results in genome-deficient virion production. ZCCHC3 also binds to the long terminal repeat on the viral genome via the middle-folded domain, sequestering the viral genome to P-bodies, which leads to decreased viral replication and production. This distinct, dual-acting antiviral mechanism makes upregulation of ZCCHC3 a novel potential therapeutic strategy.
RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with enhanced transmissibility and immune escape have emerged periodically throughout the coronavirus disease 2019 (COVID-19) pandemic, but the impact of these variants on disease severity has remained unclear. In this single-center, retrospective cohort study, we examined the association between SARS-CoV-2 clade and patient outcome over a two-year period in Chicago, Illinois. Between March 2020 and March 2022, 14,252 residual diagnostic specimens were collected from SARS-CoV-2-positive inpatients and outpatients alongside linked clinical and demographic metadata, of which 2,114 were processed for viral whole-genome sequencing. When controlling for patient demographics and vaccination status, several viral clades were associated with risk for hospitalization, but this association was negated by the inclusion of population-level confounders, including case count, sampling bias, and shifting standards of care. These data highlight the importance of integrating non-virological factors into disease severity and outcome models for the accurate assessment of patient risk.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Epidemiologia Molecular , Estudos Retrospectivos , Teste para COVID-19RESUMO
Young men who have sex with men (YMSM) in Nigeria are ten times more likely to be living with HIV-1 than other young men. Due to stigma and criminalization of same-sex sexual behavior, YMSM sexual networks are likely to overlap with those of the general population, leading to a generalized HIV-1 epidemic. Due to limited research on social/sexual network dynamics related to HIV-1 in Nigeria, our study focused on YMSM and sought to assess the feasibility and acceptability of collecting social and sexual network data in Network Canvas from individuals newly diagnosed with HIV-1 in Ibadan, Nigeria. The Network Canvas software was piloted at three sites in Ibadan, Nigeria to collect social/sexual network data from 151 individuals newly diagnosed with HIV-1. Our study sample included 37.7% YMSM; participants reported a mean of 2.6 social alters and 2.6 sexual alters. From the 151 egos and 634 alters, 85 potential unique individuals (194 total) were identified; 65 egos/alters were collapsed into 25 unique individuals. Our success collecting network data from individuals newly diagnosed with HIV-1 in Ibadan demonstrates clear feasibility and acceptability of the approach and the use of Network Canvas to capture and manage these data.
Assuntos
Infecções por HIV , Soropositividade para HIV , Minorias Sexuais e de Gênero , Masculino , Humanos , Homossexualidade Masculina , Nigéria/epidemiologia , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Comportamento SexualRESUMO
The genetic modification of T cells has advanced cellular immunotherapies, yet the delivery of biologics specifically to T cells remains challenging. Here we report a suite of methods for the genetic engineering of cells to produce extracellular vesicles (EVs)-which naturally encapsulate and transfer proteins and nucleic acids between cells-for the targeted delivery of biologics to T cells without the need for chemical modifications. Specifically, the engineered cells secreted EVs that actively loaded protein cargo via a protein tag and that displayed high-affinity T-cell-targeting domains and fusogenic glycoproteins. We validated the methods by engineering EVs that delivered Cas9-single-guide-RNA complexes to ablate the gene encoding the C-X-C chemokine co-receptor type 4 in primary human CD4+ T cells. The strategy is amenable to the targeted delivery of biologics to other cell types.
RESUMO
The emergence and worldwide spread of SARS-CoV-2 during the COVID-19 pandemic necessitated the adaptation and rapid deployment of viral WGS and analysis techniques that had been previously applied on a more limited basis to other viral pathogens, such as HIV and influenza viruses. The need for WGS was driven in part by the low mutation rate of SARS-CoV-2, which necessitated measuring variation along the entire genome sequence to effectively differentiate lineages and characterize viral evolution. Several WGS approaches designed to maximize throughput and accuracy were quickly adopted by surveillance labs around the world. These broad-based SARS-CoV-2 genomic sequencing efforts revealed ongoing evolution of the virus, highlighted by the successive emergence of new viral variants throughout the course of the pandemic. These genomic insights were instrumental in characterizing the effects of viral mutations on transmissibility, immune escape and viral tropism, which in turn helped guide public health policy, the use of monoclonal antibody therapeutics and vaccine development strategies. As the use of direct-acting antivirals for the treatment of COVID-19 became more widespread, the potential for emergence of antiviral resistance has driven ongoing efforts to delineate resistance mutations and to monitor global sequence databases for their emergence. Given the critical role of viral genomics in the international effort to combat the COVID-19 pandemic, coordinated efforts should be made to expand global genomic surveillance capacity and infrastructure towards the anticipation and prevention of future pandemics.