Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 1524-1539, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297702

RESUMO

Image scanning microscopy (ISM) achieves resolution beyond the diffraction limit by a factor of 2. However, prior ISM research predominantly employs scalar diffraction theory, neglecting critical physical effects such as polarization, aberrations, and Stokes shift. This paper presents a comprehensive vectorial ISM point spread function (PSF) model that accounts for these phenomena. By considering the effect of polarization in emission and excitation paths, as well as aberrations and Stokes shift, our model provides a more accurate representation of ISM. We analyze the differences between scalar and vectorial theories in ISM and investigate the impact of pinhole size and aberration strength on resolution. At a numerical aperture of 1.2, the full width half maximum (FWHM) discrepancy between scalar and vectorial ISM PSFs can reach 45 nm, representing a 30% deviation from the vectorial model. Additionally, we explore multiphoton excitation in ISM and observe increased FWHM for 2-photon and 3-photon excitation compared to 1-photon excitation. The FWHM of the 2-photon excitation ISM PSF increases by 20% and the FWHM of the 3-photon excitation ISM PSF increases by 28% compared to the 1-photon excitation ISM. In addition, we found that the optimal sweep factor for 2-photon ISM is 1.22, and the optimal sweep factor of 3-photon ISM is 1.12 instead of the 2 predicted by the one-photon scalar ISM theory. Our work improves the understanding of ISM and contributes to its advancement as a high-resolution imaging technique.

2.
Biophys Rep (N Y) ; 4(1): 100143, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38380223

RESUMO

Modulation enhanced single-molecule localization microscopy (meSMLM), where emitters are sparsely activated with sequentially applied patterned illumination, increases the localization precision over single-molecule localization microscopy (SMLM). The precision improvement of modulation enhanced SMLM is derived from retrieving the position of an emitter relative to individual illumination patterns, which adds to existing point spread function information from SMLM. Here, we introduce SpinFlux: modulation enhanced localization for spinning disk confocal microscopy. SpinFlux uses a spinning disk with pinholes in its illumination and emission paths, to sequentially illuminate regions in the sample during each measurement. The resulting intensity-modulated emission signal is analyzed for each individual pattern to localize emitters with improved precision. We derive a statistical image formation model for SpinFlux and we quantify the theoretical minimum localization uncertainty in terms of the Cramér-Rao lower bound. Using the theoretical minimum uncertainty, we compare SpinFlux to localization on Fourier reweighted image scanning microscopy reconstructions. We find that localization on image scanning microscopy reconstructions with Fourier reweighting ideally results in a global precision improvement of 2.1 over SMLM. When SpinFlux is used for sequential illumination with three patterns around the emitter position, the localization precision improvement over SMLM is twofold when patterns are focused around the emitter position. If four donut-shaped illumination patterns are used for SpinFlux, the maximum local precision improvement over SMLM is increased to 3.5. Localization of image scanning microscopy reconstructions thus has the largest potential for global improvements of the localization precision, where SpinFlux is the method of choice for local refinements.

3.
Opt Express ; 31(25): 42701-42722, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087638

RESUMO

Three dimensional modulation-enhanced single-molecule localization techniques, such as ModLoc, offer advancements in axial localization precision across the entire field of view and axial capture range, by applying phase shifting to the illumination pattern. However, this improvement is limited by the pitch of the illumination pattern that can be used and requires registration between separate regions of the camera. To overcome these limitations, we present ZIMFLUX, a method that combines astigmatic point-spread-function (PSF) engineering with a structured illumination pattern in all three spatial dimensions. In order to achieve this we address challenges such as optical aberrations, refractive index mismatch, supercritical angle fluorescence (SAF), and imaging at varying depths within a sample, by implementing a vectorial PSF model. In scenarios involving refractive index mismatch between the sample and immersion medium, the astigmatic PSF loses its ellipticity at greater imaging depths, leading to a deterioration in axial localization precision. In contrast, our simulations demonstrate that ZIMFLUX maintains high axial localization precision even when imaging deeper into the sample. Experimental results show unbiased localization of 3D 80 nm DNA-origami nanostructures in SAF conditions with a 1.5-fold improvement in axial localization precision when comparing ZIMFLUX to conventional SMLM methods that rely solely on astigmatic PSF engineering.

4.
HardwareX ; 14: e00415, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37078005

RESUMO

Optofluidic devices have revolutionized the manipulation and transportation of fluid at smaller length scales ranging from micrometers to millimeters. We describe a dedicated optical setup for studying laser-induced cavitation inside a microchannel. In a typical experiment, we use a tightly focused laser beam to locally evaporate the solution laced with a dye resulting in the formation of a microbubble. The evolving bubble interface is tracked using high-speed microscopy and digital image analysis. Furthermore, we extend this system to analyze fluid flow through fluorescence-Particle Image Velocimetry (PIV) technique with minimal adaptations. In addition, we demonstrate the protocols for the in-house fabrication of a microchannel tailored to function as a sample holder in this optical setup. In essence, we present a complete guide for constructing a fluorescence microscope from scratch using standard optical components with flexibility in the design and at a lower cost compared to its commercial analogues.

5.
Front Neurosci ; 16: 954949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278016

RESUMO

Single-molecule localization microscopy (SMLM) enables the high-resolution visualization of organelle structures and the precise localization of individual proteins. However, the expected resolution is not achieved in tissue as the imaging conditions deteriorate. Sample-induced aberrations distort the point spread function (PSF), and high background fluorescence decreases the localization precision. Here, we synergistically combine sensorless adaptive optics (AO), in-situ 3D-PSF calibration, and a single-objective lens inclined light sheet microscope (SOLEIL), termed (AO-SOLEIL), to mitigate deep tissue-induced deteriorations. We apply AO-SOLEIL on several dSTORM samples including brains of adult Drosophila. We observed a 2x improvement in the estimated axial localization precision with respect to widefield without aberration correction while we used synergistic solution. AO-SOLEIL enhances the overall imaging resolution and further facilitates the visualization of sub-cellular structures in tissue.

6.
Biomed Opt Express ; 13(6): 3275-3294, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781973

RESUMO

High-NA light sheet illumination can improve the resolution of single-molecule localization microscopy (SMLM) by reducing the background fluorescence. These approaches currently require custom-made sample holders or additional specialized objectives, which makes the sample mounting or the optical system complex and therefore reduces the usability of these approaches. Here, we developed a single-objective lens-inclined light sheet microscope (SOLEIL) that is capable of 2D and 3D SMLM in thick samples. SOLEIL combines oblique illumination with point spread function PSF engineering to enable dSTORM imaging in a wide variety of samples. SOLEIL is compatible with standard sample holders and off-the-shelve optics and standard high NA objectives. To accomplish optimal optical sectioning we show that there is an ideal oblique angle and sheet thickness. Furthermore, to show what optical sectioning delivers for SMLM we benchmark SOLEIL against widefield and HILO microscopy with several biological samples. SOLEIL delivers in 15 µm thick Caco2-BBE cells a 374% higher intensity to background ratio and a 54% improvement in the estimated CRLB compared to widefield illumination, and a 184% higher intensity to background ratio and a 20% improvement in the estimated CRLB compared to HILO illumination.

7.
Biophys J ; 121(12): 2279-2289, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35614851

RESUMO

Modulation enhanced single-molecule localization microscopy (meSMLM) methods improve the localization precision by using patterned illumination to encode additional position information. Iterative meSMLM (imeSMLM) methods iteratively generate prior information on emitter positions, used to locally improve the localization precision during subsequent iterations. The Cramér-Rao lower bound cannot incorporate prior information to bound the best achievable localization precision because it requires estimators to be unbiased. By treating estimands as random variables with a known prior distribution, the Van Trees inequality (VTI) can be used to bound the best possible localization precision of imeSMLM methods. An imeSMLM method is considered, where the positions of in-plane standing-wave illumination patterns are controlled over the course of multiple iterations. Using the VTI, we analytically approximate a lower bound on the maximum localization precision of imeSMLM methods that make use of standing-wave illumination patterns. In addition, we evaluate the maximally achievable localization precision for different illumination pattern placement strategies using Monte Carlo simulations. We show that in the absence of background and under perfect modulation, the information content of signal photons increases exponentially as a function of the iteration count. However, the information increase is no longer exponential as a function of the iteration count under non-zero background, imperfect modulation, or limited mechanical resolution of the illumination positioning system. As a result, imeSMLM with two iterations reaches at most a fivefold improvement over SMLM at 8 expected background photons per pixel and 95% modulation contrast. Moreover, the information increase from imeSMLM is balanced by a reduced signal photon rate. Therefore, SMLM outperforms imeSMLM when considering an equal measurement time and illumination power per iteration. Finally, the VTI is an excellent tool for the assessment of the performance of illumination control and is therefore the method of choice for optimal design and control of imeSMLM methods.


Assuntos
Microscopia , Imagem Individual de Molécula , Método de Monte Carlo , Fótons , Imagem Individual de Molécula/métodos
8.
Opt Express ; 29(24): 39920-39929, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809346

RESUMO

Single-photon avalanche diode (SPAD) arrays can be used for single-molecule localization microscopy (SMLM) because of their high frame rate and lack of readout noise. SPAD arrays have a binary frame output, which means photon arrivals should be described as a binomial process rather than a Poissonian process. Consequentially, the theoretical minimum uncertainty of the localizations is not accurately predicted by the Poissonian Cramér-Rao lower bound (CRLB). Here, we derive a binomial CRLB and benchmark it using simulated and experimental data. We show that if the expected photon count is larger than one for all pixels within one standard deviation of a Gaussian point spread function, the binomial CRLB gives a 46% higher theoretical uncertainty than the Poissonian CRLB. For typical SMLM photon fluxes, where no saturation occurs, the binomial CRLB predicts the same uncertainty as the Poissonian CRLB. Therefore, the binomial CRLB can be used to predict and benchmark localization uncertainty for SMLM with SPAD arrays for all practical emitter intensities.

9.
Opt Express ; 29(2): 2332-2347, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726430

RESUMO

Obtaining a tiny focal spot is desired for super resolution. We do a vectorial numerical analysis of the linearly, circularly, and radidally polarized electromagnetic fields being focused through a dielectric micro/nanoparticle of size comparable to the wavelength. We find tiny focal spots (up to ∼0.05 λ2) can be obtained behind micro/nanoparticles of various shapes, e.g. spherical, disk-shaped, and cuboid micro/nanoparticles. Furthermore, we also investigate the influence of the misalignment of a real lens system on the tiny focal spots. We find that tiny focal spots can still be generated even though they are distorted due to the misalignment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...