RESUMO
Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 µm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC257, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.
Assuntos
Clorófitas , Vírus Gigantes , Vírus Gigantes/genética , Filogenia , Genoma Viral/genética , Clorófitas/genética , Metagenômica , Bactérias/genéticaRESUMO
Haplozoans are intestinal parasites of marine annelids with bizarre traits, including a differentiated and dynamic trophozoite stage that resembles the scolex and strobila of tapeworms. Described originally as "Mesozoa", comparative ultrastructural data and molecular phylogenetic analyses have shown that haplozoans are aberrant dinoflagellates; however, these data failed to resolve the phylogenetic position of haplozoans within this diverse group of protists. Several hypotheses for the phylogenetic position of haplozoans have been proposed: (1) within the Gymnodiniales based on tabulation patterns on the trophozoites, (2) within the Blastodiniales based on the parasitic life cycle, and (3) part of a new lineage of dinoflagellates that reflects the highly modified morphology. Here, we demonstrate the phylogenetic position of haplozoans by using three single-trophozoite transcriptomes representing two species: Haplozoon axiothellae and two isolates of H. pugnus collected from the Northwestern and Northeastern Pacific Ocean. Unexpectedly, our phylogenomic analysis of 241 genes showed that these parasites are unambiguously nested within the Peridiniales, a clade of single-celled flagellates that is well represented in marine phytoplankton communities around the world. Although the intestinal trophozoites of Haplozoon species do not show any peridinioid characteristics, we suspect that uncharacterized life cycle stages may reflect their evolutionary history within the Peridiniales.
Assuntos
Cestoides , Dinoflagellida , Parasitos , Poliquetos , Animais , Filogenia , Cestoides/genética , Dinoflagellida/genéticaRESUMO
Symbiosis between prokaryotes and microbial eukaryotes (protists) has broadly impacted both evolution and ecology. Endosymbiosis led to mitochondria and plastids, the latter spreading across the tree of eukaryotes by subsequent rounds of endosymbiosis. Present-day endosymbionts in protists remain both common and diverse, although what function they serve is often unknown. Here, we describe a highly complex community of endosymbionts and a bacteriophage (phage) within a single cryptomonad cell. Cryptomonads are a model for organelle evolution because their secondary plastid retains a relict endosymbiont nucleus, but only one previously unidentified Cryptomonas strain (SAG 25.80) is known to harbor bacterial endosymbionts. We carried out electron microscopy and FISH imaging as well as genomic sequencing on Cryptomonas SAG 25.80, which revealed a stable, complex community even after over 50 years in continuous cultivation. We identified the host strain as Cryptomonas gyropyrenoidosa, and sequenced genomes from its mitochondria, plastid, and nucleomorph (and partially its nucleus), as well as two symbionts, Megaira polyxenophila and Grellia numerosa, and one phage (MAnkyphage) infecting M. polyxenophila. Comparing closely related endosymbionts from other hosts revealed similar metabolic and genomic features, with the exception of abundant transposons and genome plasticity in M. polyxenophila from Cryptomonas. We found an abundance of eukaryote-interacting genes as well as many toxin-antitoxin systems, including in the MAnkyphage genome that also encodes several eukaryotic-like proteins. Overall, the Cryptomonas cell is an endosymbiotic conglomeration with seven distinct evolving genomes that all show evidence of inter-lineage conflict but nevertheless remain stable, even after more than 4,000 generations in culture.
Assuntos
Criptófitas , Genoma , Eucariotos/genética , Núcleo Celular/genética , Plastídeos/genética , Bactérias/genética , Simbiose/genética , FilogeniaRESUMO
Variations in toxicity of the benthic dinoflagellate Ostreopsis Schmidt 1901 have been attributed to specific molecular clades, biogeography of isolated strains, and the associated bacterial community. Here, we attempted to better understand the biodiversity and the basic biology influencing toxin production of Ostreopsis. Nine clonal cultures were established from Okinawa, Japan, and identified using phylogenetic analysis of the ITS-5.8S rRNA and 28S rRNA genes. Morphological analysis suggests that the apical pore complex L/W ratio could be a feature for differentiating Ostreopsis sp. 2 from the O. ovata species complex. We analyzed the toxicity and bacterial communities using liquid chromatography-mass spectrometry, and PCR-free metagenomic sequencing. Ovatoxin was detected in three of the seven strains of O. cf. ovata extracts, highlighting intraspecies variation in toxin production. Additionally, two new potential analogs of ovatoxin-a and ostreocin-A were identified. Commonly associated bacteria clades of Ostreopsis were identified from the established cultures. While some of these bacteria groups may be common to Ostreopsis (Rhodobacterales, Flavobacteria-Sphingobacteria, and Enterobacterales), it was not clear from our analysis if any one or more of these plays a role in toxin biosynthesis. Further examination of biosynthetic pathways in metagenomic data and additional experiments isolating specific bacteria from Ostreopsis would aid these efforts.
Assuntos
Dinoflagellida , Japão , Ilhas do Pacífico , Filogenia , Dinoflagellida/genética , Dinoflagellida/metabolismo , BactériasRESUMO
Understanding the order and importance of events through which endosymbionts transition into cellular organelles (organellogenesis) is central to hypotheses about the origin of the eukaryotic cell. A new study on host-symbiont integration in a unicellular eukaryote reveals host-derived cell-division proteins that are targeted to the cell envelope of a bacterial endosymbiont and involved in its cell division.
Assuntos
Organelas , Simbiose , Bactérias , EucariotosRESUMO
Two new mealybug species (Hemiptera: Coccomorpha: Pseudococcidae), namely, Dysmicoccus kunaw Tanaka sp. nov. and Phenacoccus miruku Tanaka Choi sp. nov., collected in Japan, are described based on the morphological characteristics of the adult females. Dysmicoccus kunaw resembles D. trispinosus (Hall 1923) and D. furcillosus Williams 2004, but differs from them in having two conical cerarian setae in each anal lobe cerarius, a considerable number of dorsal multilocular pores on the abdominal segments, and two types of oral collar tubular ducts on the venter. Phenacoccus miruku is similar to P. sisymbriifolium Granara de Willink 2007 and P. similis Granara de Willink 1983, but differs by lacking quinqelocular pores anterior to the mouthparts and translucent pores on the hind tibiae, and in the shape of the circulus. A molecular phylogenetic analysis was used to investigate the phylogenetic placements of the two new species. Keys to the species of Dysmicoccus Ferris and Phenacoccus Cockerell found in Japan are provided.
Assuntos
Hemípteros , Animais , Feminino , Japão , FilogeniaRESUMO
Prokaryotic genomes are usually densely packed with intact and functional genes. However, in certain contexts, such as after recent ecological shifts or extreme population bottlenecks, broken and nonfunctional gene fragments can quickly accumulate and form a substantial fraction of the genome. Identification of these broken genes, called pseudogenes, is a critical step for understanding the evolutionary forces acting upon, and the functional potential encoded within, prokaryotic genomes. Here, we present Pseudofinder, an open-source software dedicated to pseudogene identification and analysis in bacterial and archaeal genomes. We demonstrate that Pseudofinder's multi-pronged, reference-based approach can detect a wide variety of pseudogenes, including those that are highly degraded and typically missed by gene-calling pipelines, as well newly formed pseudogenes containing only one or a few inactivating mutations. Additionally, Pseudofinder can detect genes that lack inactivating substitutions but experiencing relaxed selection. Implementation of Pseudofinder in annotation pipelines will allow more precise estimations of the functional potential of sequenced microbes, while also generating new hypotheses related to the evolutionary dynamics of bacterial and archaeal genomes.
Assuntos
Genoma Arqueal , Pseudogenes , Bactérias/genética , Células Procarióticas , Pseudogenes/genética , SoftwareRESUMO
Symbiotic systems vary in the degree to which the partners are bound to each other1. At one extreme, there are intracellular endosymbionts in mutually obligate relationships with their host, often interpreted as mutualistic. The symbiosis between the betaproteobacterium Polynucleobacter and the ciliate Euplotes (clade B) challenges this view2: although freshwater Euplotes species long ago became dependent on endosymbionts, the many extant Polynucleobacter lineages they harbour arose recently and in parallel from different free-living ancestors2. The host requires the endosymbionts for reproduction and survival3, but each newly established symbiont is ultimately driven to extinction in a cycle of establishment, degeneration, and replacement. Similar replacement events have been observed in sap-feeding insects4-6, a model for bacteria-eukaryote symbioses7, but usually only affect a small subset of the host populations. Most insects retain an ancient coevolving symbiont, suggesting that long-term mutualism and permanent integration remain the rule and symbiont turnovers are mere evolutionary side-stories. Here we show that this is not the case for Euplotes. We examined all known essential Euplotes symbionts and found that none are ancient or coevolving; rather, all are recently established and continuously replaced over relatively short evolutionary time spans, making the symbiosis ancient for the host but not for any bacterial lineage.
Assuntos
Cilióforos , Euplotes , Animais , Bactérias , Evolução Biológica , Euplotes/microbiologia , Insetos , Filogenia , SimbioseRESUMO
Gene transfer agents (GTAs) are virus-like structures that package and transfer prokaryotic DNA from donor to recipient prokaryotic cells. Here, we describe widespread GTA gene clusters in the highly reduced genomes of bacterial endosymbionts from microbial eukaryotes (protists). Homologs of the GTA capsid and portal complexes were initially found to be present in several highly reduced alphaproteobacterial endosymbionts of diplonemid protists (Rickettsiales and Rhodospirillales). Evidence of GTA expression was found in polyA-enriched metatranscriptomes of the diplonemid hosts and their endosymbionts, but due to biases in the polyA-enrichment methods, levels of GTA expression could not be determined. Examining the genomes of closely related bacteria revealed that the pattern of retained GTA head/capsid complexes with missing tail components was common across Rickettsiales and Holosporaceae (Rhodospirillales), all obligate symbionts with a wide variety of eukaryotic hosts. A dN/dS analysis of Rickettsiales and Holosporaceae symbionts revealed that purifying selection is likely the main driver of GTA evolution in symbionts, suggesting they remain functional, but the ecological function of GTAs in bacterial symbionts is unknown. In particular, it is unclear how increasing horizontal gene transfer in small, largely clonal endosymbiont populations can explain GTA retention, and, therefore, the structures may have been repurposed in endosymbionts for host interactions. Either way, their widespread retention and conservation in endosymbionts of diverse eukaryotes suggests an important role in symbiosis.
Assuntos
Eucariotos , Vírus , Bactérias/genética , Eucariotos/genética , Transferência Genética Horizontal , Filogenia , Simbiose/genéticaRESUMO
The family "Candidatus Midichloriaceae" constitutes the most diverse but least studied lineage within the important order of intracellular bacteria Rickettsiales. "Candidatus Midichloriaceae" endosymbionts are found in many hosts, including terrestrial arthropods, aquatic invertebrates, and protists. Representatives of the family are not documented to be pathogenic, but some are associated with diseased fish or corals. Different genera display a range of unusual features, such as full sets of flagellar genes without visible flagella or the ability to invade host mitochondria. Since studies on "Ca. Midichloriaceae" tend to focus on the host, the family is rarely addressed as a unit, and we therefore lack a coherent picture of its diversity. Here, we provide four new midichloriaceae genomes, and we survey molecular and ecological data from the entire family. Features like genome size, ecological context, and host transitions vary considerably even among closely related midichloriaceae, suggesting a high frequency of such shifts, incomplete sampling, or both. Important functional traits involved in energy metabolism, flagella, and secretion systems were independently reduced multiple times with no obvious correspondence to host or habitat, corroborating the idea that many features of these "professional symbionts" are largely independent of host identity. Finally, despite "Ca. Midichloriaceae" being predominantly studied in ticks, our analyses show that the clade is mainly aquatic, with a few terrestrial offshoots. This highlights the importance of considering aquatic hosts, and protists in particular, when reconstructing the evolution of these endosymbionts and by extension all Rickettsiales. IMPORTANCE Among endosymbiotic bacterial lineages, few are as intensely studied as Rickettsiales, which include the causative agents of spotted fever, typhus, and anaplasmosis. However, an important subgroup called "Candidatus Midichloriaceae" receives little attention despite accounting for a third of the diversity of Rickettsiales and harboring a wide range of bacteria with unique features, like the ability to infect mitochondria. Midichloriaceae are found in many hosts, from ticks to corals to unicellular protozoa, and studies on them tend to focus on the host groups. Here, for the first time since the establishment of this clade, we address the genomics, evolution, and ecology of "Ca. Midichloriaceae" as a whole, highlighting trends and patterns, the remaining gaps in our knowledge, and its importance for the understanding of symbiotic processes in intracellular bacteria.
Assuntos
Alphaproteobacteria , Rickettsiales , Alphaproteobacteria/genética , Animais , Bactérias , Filogenia , SimbioseRESUMO
Comparing obligate endosymbionts with their free-living relatives is a powerful approach to investigate the evolution of symbioses, and it has led to the identification of several genomic traits consistently associated with the establishment of symbiosis. 'Candidatus Nebulobacter yamunensis' is an obligate bacterial endosymbiont of the ciliate Euplotes that seemingly depends on its host for survival. A subsequently characterized bacterial strain with an identical 16S rRNA gene sequence, named Fastidiosibacter lacustris, can instead be maintained in pure culture. We analysed the genomes of 'Candidatus Nebulobacter' and Fastidiosibacter seeking to identify key differences between their functional traits and genomic structure that might shed light on a recent transition to obligate endosymbiosis. Surprisingly, we found almost no such differences: the two genomes share a high level of sequence identity, the same overall structure, and largely overlapping sets of genes. The similarities between the genomes of the two strains are at odds with their different ecological niches, confirmed here with a parallel growth experiment. Although other pairs of closely related symbiotic/free-living bacteria have been compared in the past, 'Candidatus Nebulobacter' and Fastidiosibacter represent an extreme example proving that a small number of (unknown) factors might play a pivotal role in the earliest stages of obligate endosymbiosis establishment.
Assuntos
Bactérias , Simbiose , Simbiose/genética , Filogenia , RNA Ribossômico 16S/genética , Bactérias/genética , GenômicaRESUMO
Coolia Meunier 1919 from benthic assemblages of Hawai'i and Guam were isolated and clonal cultures were established from single cells. Cultures were identified to species-level based on 28S rRNA and ITS-5.8S rRNA genes and tested for toxicity. In Hawai'i, two strains of C. malayensis were isolated. In Guam, a high biodiversity was identified: four strains of C. malayensis, one strain of C. palmyrensis, one strain of C. tropicalis, one strain of C. canariensis phylogroup III, and two strains forming a new phylogroup (phylogroup IV) of nontoxic C. canariensis. Morphology of the new C. canariensis phylogroup was described using light microscopy and scanning electron microscopy. Mass cultures and methanol extracts of representative cultures (C. malayensis, C. palmyrensis, C. canariensis, C. tropicalis) from Guam were prepared for liquid chromatography-mass spectrometry analysis. Chemical analyses revealed yessotoxin analogue C56H78O18S2 is produced by C. malayensis, C. canariensis phylogroup IV and C. palmyrensis, but other analogues, C57H80O18S2 and C58H86O18S2, were only found in C. malayensis (Okinawa) and C. canariensis phylogroup IV. Individual toxin profiles were also different over time for an Okinawa strain of C. malayensis (NIES-3637), highlighting intra and inter-species variation in Yessotoxin-analogue expression. Biological activity was tested using Artemia bioassay and toxicity was observed in Guam and Okinawa strains of C. malayensis. Strong support of four distinct clades within the C. canariensis species complex was recovered in phylogenetic analyses, despite morphological similarities.
Assuntos
Dinoflagellida , Animais , Artemia , Biodiversidade , Cromatografia Líquida , Dinoflagellida/química , FilogeniaRESUMO
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Assuntos
Archaea , Bactérias , Eucariotos , Células Procarióticas , Simbiose , AnimaisRESUMO
Phenotypic differences between sexes are often mediated by differential expression and alternative splicing of genes. However, the mechanisms that regulate these expression and splicing patterns remain poorly understood. The mealybug, Planococcus citri, displays extreme sexual dimorphism and exhibits an unusual instance of sex-specific genomic imprinting, paternal genome elimination (PGE), in which the paternal chromosomes in males are highly condensed and eliminated from the sperm. Planococcus citri has no sex chromosomes and both sexual dimorphism and PGE are predicted to be under epigenetic control. We recently showed that P. citri females display a highly unusual DNA methylation profile for an insect species, with the presence of promoter methylation associated with lower levels of gene expression. Here, we therefore decided to explore genome-wide differences in DNA methylation between male and female P. citri using whole-genome bisulphite sequencing. We identified extreme differences in genome-wide levels and patterns between the sexes. Males display overall higher levels of DNA methylation which manifest as more uniform low levels across the genome. Whereas females display more targeted high levels of methylation. We suggest these unique sex-specific differences are due to chromosomal differences caused by PGE and may be linked to possible ploidy compensation. Using RNA-Seq, we identify extensive sex-specific gene expression and alternative splicing, but we find no correlation with cis-acting DNA methylation.
Assuntos
Metilação de DNA , Caracteres Sexuais , Feminino , Genoma , Impressão Genômica , Humanos , Masculino , Cromossomos SexuaisRESUMO
The phylum Apicomplexa consists largely of obligate animal parasites that include the causative agents of human diseases such as malaria. Apicomplexans have also emerged as models to study the evolution of nonphotosynthetic plastids, as they contain a relict chloroplast known as the apicoplast. The apicoplast offers important clues into how apicomplexan parasites evolved from free-living ancestors and can provide insights into reductive organelle evolution. Here, we sequenced the transcriptomes and apicoplast genomes of three deep-branching apicomplexans, Margolisiella islandica, Aggregata octopiana, and Merocystis kathae. Phylogenomic analyses show that these taxa, together with Rhytidocystis, form a new lineage of apicomplexans that is sister to the Coccidia and Hematozoa (the lineages including most medically significant taxa). Members of this clade retain plastid genomes and the canonical apicomplexan plastid metabolism. However, the apicoplast genomes of Margolisiella and Rhytidocystis are the most reduced of any apicoplast, are extremely GC-poor, and have even lost genes for the canonical plastidial RNA polymerase. This new lineage of apicomplexans, for which we propose the class Marosporida class nov., occupies a key intermediate position in the apicomplexan phylogeny, and adds a new complexity to the models of stepwise reductive evolution of genome structure and organelle function in these parasites.
Assuntos
Apicomplexa/classificação , Apicomplexa/genética , Apicoplastos/genética , Tamanho do Genoma , Animais , Vias Biossintéticas/genética , Coccídios/genética , RNA Polimerases Dirigidas por DNA/genética , Eimeriidae/genética , Evolução Molecular , Invertebrados/parasitologia , Filogenia , Proteínas de Protozoários/classificação , Transcrição GênicaRESUMO
Phagocytosis is a fundamental process in marine ecosystems by which prey organisms are consumed and their biomass incorporated in food webs or remineralized. However, studies searching for the genes underlying this key ecological process in free-living phagocytizing protists are still scarce, in part due to the lack of appropriate ecological models. Our reanalysis of recent molecular datasets revealed that the cultured heterotrophic flagellate Cafeteria burkhardae is widespread in the global oceans, which prompted us to design a transcriptomics study with this species, grown with the cultured flavobacterium Dokdonia sp. We compared the gene expression between exponential and stationary phases, which were complemented with three starvation by dilution phases that appeared as intermediate states. We found distinct expression profiles in each condition and identified 2056 differentially expressed genes between exponential and stationary samples. Upregulated genes at the exponential phase were related to DNA duplication, transcription and translational machinery, protein remodeling, respiration and phagocytosis, whereas upregulated genes in the stationary phase were involved in signal transduction, cell adhesion, and lipid metabolism. We identified a few highly expressed phagocytosis genes, like peptidases and proton pumps, which could be used to target this ecologically relevant process in marine ecosystems.
Assuntos
Ecossistema , Estramenópilas , Expressão Gênica , Processos Heterotróficos , Oceanos e Mares , Estramenópilas/genéticaRESUMO
Animals interact with a diverse array of both beneficial and detrimental microorganisms. In insects, these symbioses in many cases allow feeding on nutritionally unbalanced diets. It is, however, still not clear how are obligate symbioses maintained at the cellular level for up to several hundred million years. Exact mechanisms driving host-symbiont interactions are only understood for a handful of model species and data on blood-feeding hosts with intracellular bacteria are particularly scarce. Here, we analyzed interactions between an obligately blood-sucking parasite of sheep, the louse fly Melophagus ovinus, and its obligate endosymbiont, Arsenophonus melophagi. We assembled a reference transcriptome for the insect host and used dual RNA-Seq with five biological replicates to compare expression in the midgut cells specialized for housing symbiotic bacteria (bacteriocytes) to the rest of the gut (foregut-hindgut). We found strong evidence for the importance of zinc in the system likely caused by symbionts using zinc-dependent proteases when acquiring amino acids, and for different immunity mechanisms controlling the symbionts than in closely related tsetse flies. Our results show that cellular and nutritional interactions between this blood-sucking insect and its symbionts are less intimate than what was previously found in most plant-sap sucking insects. This finding is likely interconnected to several features observed in symbionts in blood-sucking arthropods, particularly their midgut intracellular localization, intracytoplasmic presence, less severe genome reduction, and relatively recent associations caused by frequent evolutionary losses and replacements.
Assuntos
Bactérias/genética , Sistema Digestório/microbiologia , Dípteros/genética , Dípteros/microbiologia , Microbioma Gastrointestinal , Genes de Insetos , Ovinos/parasitologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Evolução Biológica , DNA Bacteriano/análise , DNA Bacteriano/genética , Vetores de Doenças , Interações Hospedeiro-Patógeno , Filogenia , Simbiose , TranscriptomaRESUMO
Genome evolution in bacterial endosymbionts is notoriously extreme: the combined effects of strong genetic drift and unique selective pressures result in highly reduced genomes with distinctive adaptations to hosts [1-4]. These processes are mostly known from animal endosymbionts, where nutritional endosymbioses represent the best-studied systems. However, eukaryotic microbes, or protists, also harbor diverse bacterial endosymbionts, but their genome reduction and functional relationships with their hosts are largely unexplored [5-7]. We sequenced the genomes of four bacterial endosymbionts from three species of diplonemids, poorly studied but abundant and diverse heterotrophic protists [8-12]. The endosymbionts come from two bacterial families, Rickettsiaceae and Holosporaceae, that have invaded two families of diplonemids, and their genomes have converged on an extremely small size (605-632 kilobase pairs [kbp]), similar gene content (e.g., metabolite transporters and secretion systems), and reduced metabolic potential (e.g., loss of energy metabolism). These characteristics are generally found in both families, but the diplonemid endosymbionts have evolved greater extremes in parallel. They possess modified type VI secretion systems that could function in manipulating host metabolism or other intracellular interactions. Finally, modified cellular machinery like the ATP synthase without oxidative phosphorylation, and the reduced flagellar apparatus present in some diplonemid endosymbionts and nutritional animal endosymbionts, indicates that intracellular mechanisms have converged in bacterial endosymbionts with various functions and from different eukaryotic hosts across the tree of life.
Assuntos
Evolução Molecular , Genoma Bacteriano , Holosporaceae/genética , Rickettsiaceae/genética , Euglenozoários/microbiologia , SimbioseRESUMO
Lower termites harbor in their hindgut complex microbial communities that are involved in the digestion of cellulose. Among these are protists, which are usually associated with specific bacterial symbionts found on their surface or inside their cells. While these form the foundations of a classic system in symbiosis research, we still know little about the functional basis for most of these relationships. Here, we describe the complex functional relationship between one protist, the oxymonad Streblomastix strix, and its ectosymbiotic bacterial community using single-cell genomics. We generated partial assemblies of the host S. strix genome and Candidatus Ordinivivax streblomastigis, as well as a complex metagenome assembly of at least 8 other Bacteroidetes bacteria confirmed by ribosomal (r)RNA fluorescence in situ hybridization (FISH) to be associated with S. strix. Our data suggest that S. strix is probably not involved in the cellulose digestion, but the bacterial community on its surface secretes a complex array of glycosyl hydrolases, providing them with the ability to degrade cellulose to monomers and fueling the metabolism of S. strix In addition, some of the bacteria can fix nitrogen and can theoretically provide S. strix with essential amino acids and cofactors, which the protist cannot synthesize. On the contrary, most of the bacterial symbionts lack the essential glycolytic enzyme enolase, which may be overcome by the exchange of intermediates with S. strix This study demonstrates the value of the combined single-cell (meta)genomic and FISH approach for studies of complicated symbiotic systems.
Assuntos
Isópteros/microbiologia , Oximonadídeos/metabolismo , Animais , Bactérias/metabolismo , Bacteroidetes/genética , Celulose/metabolismo , Sistema Digestório/metabolismo , Eucariotos/metabolismo , Genoma , Isópteros/genética , Metagenômica/métodos , Filogenia , Análise de Célula Única/métodos , SimbioseRESUMO
Whether mitochondria and plastids originated by endosymbiosis is no longer questioned, but we still do not understand the actual process of integration. Other, younger endosymbiotic systems are, however, relatively common. Traditionally, it was not clear whether these systems could be directly and informatively compared to organelles because they appear sufficiently different. Surprisingly, new data from both organelles and endosymbiotic bacteria are changing this view. As more commonalities are described, the processes underlaying these associations appear to be not so different after all. New models for endosymbiotic associations emphasize the importance of transient stages, conflict more than cooperation, and population genetics forces that lead to genome reduction, which in turn restricts most endosymbionts to one of a few possible evolutionary pathways, commonly ending with extinction.