Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Comput Aided Mol Des ; 38(1): 6, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263499

RESUMO

SARS-CoV-2, the virus that causes COVID-19, led to a global health emergency that claimed the lives of millions. Despite the widespread availability of vaccines, the virus continues to exist in the population in an endemic state which allows for the continued emergence of new variants. Most of the current vaccines target the spike glycoprotein interface of SARS-CoV-2, creating a selection pressure favoring viral immune evasion. Antivirals targeting other molecular interactions of SARS-CoV-2 can help slow viral evolution by providing orthogonal selection pressures on the virus. GRP78 is a host auxiliary factor that mediates binding of the SARS-CoV-2 spike protein to human cellular ACE2, the primary pathway of cell infection. As GRP78 forms a ternary complex with SARS-CoV-2 spike protein and ACE2, disrupting the formation of this complex is expected to hinder viral entry into host cells. Here, we developed a model of the GRP78-Spike RBD-ACE2 complex. We then used that model together with hot spot mapping of the GRP78 structure to identify the putative binding site for spike protein on GRP78. Next, we performed structure-based virtual screening of known drug/candidate drug libraries to identify binders to GRP78 that are expected to disrupt spike protein binding to the GRP78, and thereby preventing viral entry to the host cell. A subset of these compounds has previously been shown to have some activity against SARS-CoV-2. The identified hits are starting points for the further development of novel SARS-CoV-2 therapeutics, potentially serving as proof-of-concept for GRP78 as a potential drug target for other viruses.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Vacinas , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Chaperona BiP do Retículo Endoplasmático
2.
Nat Ecol Evol ; 5(6): 836-844, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33833421

RESUMO

The Convention on Biological Diversity's post-2020 Global Biodiversity Framework will probably include a goal to stabilize and restore the status of species. Its delivery would be facilitated by making the actions required to halt and reverse species loss spatially explicit. Here, we develop a species threat abatement and restoration (STAR) metric that is scalable across species, threats and geographies. STAR quantifies the contributions that abating threats and restoring habitats in specific places offer towards reducing extinction risk. While every nation can contribute towards halting biodiversity loss, Indonesia, Colombia, Mexico, Madagascar and Brazil combined have stewardship over 31% of total STAR values for terrestrial amphibians, birds and mammals. Among actions, sustainable crop production and forestry dominate, contributing 41% of total STAR values for these taxonomic groups. Key Biodiversity Areas cover 9% of the terrestrial surface but capture 47% of STAR values. STAR could support governmental and non-state actors in quantifying their contributions to meeting science-based species targets within the framework.


Assuntos
Conservação dos Recursos Naturais , Animais , Brasil , Colômbia , Indonésia , Madagáscar , México
3.
Science ; 328(5986): 1633, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20576870
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...