Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(35): 48073-48084, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39017868

RESUMO

Recent advancements in membrane technologies and disinfection methods have enhanced drinking water quality significantly. However, microorganisms, including free-living amoebae (FLA), persist and pose potential threats to humans. FLA are linked to severe neuro-ophthalmic infections and serve as hosts of pathogenic bacteria. This study examined FLA presence in chlorinated and ultrafiltration drinking water and evaluated chlorine's disinfectant. Of 115 water samples, 21 tested positive for Acanthamoeba sp., Allovahlkampfia sp., and Vermamoeba vermiformis, originating from chlorinated sources. FLA trophozoites withstand temperatures up to 37 °C, while the cysts tolerate heat shocks of 60-70 °C. Trophozoites are susceptible to 5 mg L-1 chlorine, but cysts remain viable at concentrations up to 10 mg L-1. FLAs' survival in chlorinated waters is attributed to high cyst tolerance and lower residual chlorine concentrations. These findings highlight the need for ultrafiltration or enhanced chlorination protocols to ensure safer drinking water.


Assuntos
Amoeba , Água Potável , Halogenação , Amoeba/efeitos dos fármacos , Água Potável/química , Cloro/farmacologia , Desinfecção/métodos , Desinfetantes , Purificação da Água/métodos
2.
Bioresour Technol ; 365: 128145, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257521

RESUMO

The production of biohythane, a combination of energy-dense hydrogen and methane, from the anaerobic digestion of low-cost organic wastes has attracted attention as a potential candidate for the transition to a sustainable circular economy. Substantial research has been initiated to upscale the process engineering to establish a hythane-based economy by addressing major challenges associated with the process and product upgrading. This review provides an overview of the feasibility of biohythane production in various anaerobic digestion systems (single-stage, dual-stage) and possible technologies to upgrade biohythane to hydrogen-enriched renewable natural gas. The main goal of this review is to promote research in biohythane production technology by outlining critical needs, including meta-omics and metabolic engineering approaches for the advancements in biohythane production technology.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Fermentação , Hidrogênio/metabolismo , Biocombustíveis
3.
Artigo em Inglês | MEDLINE | ID: mdl-36194320

RESUMO

Microcystins (MCs) are toxins produced by cyanobacteria commonly found in harmful algal blooms (HABs). Due to their toxicity to humans and other organisms, the World Health Organization (WHO) sets a guideline of 1 µg L-1 for microcystin-leucine-arginine (MC-LR) in drinking water. However, current analytical techniques for the detection of MC-LR such as liquid chromatography-mass spectrometry (LC-MS) and ELISA are costly, bulky, time-consuming, and mostly conducted in a laboratory, requiring highly trained personnel. An analytical method that can be used in the field for rapid determination is essential. In this study, an anti-MC-LR/MC-LR/cysteamine-coated screen-printed carbon electrode (SPCE) biosensor was newly developed to detect MC-LR, bioelectrochemically, in water. The functionalization of the electrode surface was confirmed with surface characterization methods. The sensor performance was evaluated by electrochemical impedance spectroscopy (EIS), obtaining a linear working range of MC-LR concentrations between 0.1 and 100 µg L-1 with a limit of detection (LOD) of 0.69 ng L-1. Natural water samples experiencing HABs were collected and analyzed using the developed biosensor, demonstrating the excellent performance of the biosensor with a relative standard deviation (RSD) of 0.65%. The interference tests showed minimal error and RSD values against other common MCs and possible coexisting ions found in water. The biosensor showed acceptable functionality with a shelf life of up to 12 weeks. Overall, the anti-MC-LR/MC-LR/cysteamine/SPCE biosensors can be an innovative solution with characteristics that allow for in situ, low-cost, and easy-to-use capabilities which are essential for developing an overarching and integrated "smart" environmental management system.

4.
J Power Sources ; 527: 1-11, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35582347

RESUMO

In this study, a novel molybdenum disulfide (MoS2) nano-carbon (NC) coated cathode was developed for hydrogen production in a microbial electrolysis cell (MEC), while treating simulated urine with 2-6 times dilution (conductivity <20 mS cm-1). MoS2 nanoparticles were electrodeposited on the NC coated cathodes at -100, -150 and -200 µA cm-2 and their performances were evaluated in the MEC. The chronopotentiometry (CP) tests showed the improved catalytic activity of MoS2-NC cathodes with much lower cathode overpotential than non-MoS2 coated electrodes. The MoS2-NC200 cathode, electrodeposited at -200 µA cm-2, showed the maximum hydrogen production rate of 0.152 ± 0.002 m3 H2 m-2 d-1 at 0.9V of Eap, which is comparable to the previously reported Pt electrodes. It was found that high solution conductivity over 20 mS cm-1 (>600 mg L-1 NH3-N) can adversely affect the biofilm architecture and the bacterial activity at the anode of the MEC. Exoelectrogenic bacteria for this system at the anode were identified as Tissierella (Clostridia) and Bacteroidetes taxa. Maximum ammonia-nitrogen (NH3-N) and phosphorus (PO4 3--P) removal were 68.7 and 98.6%, respectively. This study showed that the newly fabricated MoS2-NC cathode can be a cost-effective alternative to the Pt cathode for renewable bioelectrochemical hydrogen production from urine.

5.
Chemosphere ; 296: 134001, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35181416

RESUMO

In this study, sliver (Ag) and gold (Au) nanoparticles (NPs) were embedded on poly (acrylic acid) (PAA)/poly (allylamine) hydrochloride (PAH) hydrogel fibers for improved electrochemical oxidation (EO) of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) removal. The NPs-loaded PAA/PAHs shows the better charge transport compared to the ceramic nanofiber membranes (CNM) electrodes. At 10 mA cm-2 of current density, the Ag-PAA/PAH electrodes showed a faster removal of PFAS compared to the Ag-CNM electrode probably due to large surface area-volume ratio and high porosity from the hydrogel. Among NPs-loaded PAA/PAH electrodes, the Ag/Au-PAA/PAH electrodes showed the highest removal of PFOA (72%) and PFOS (91%) in 2 h with the maximum removal rate of PFOA (0.0046 min-1) and PFOS (0.0093 min-1). The rapid PFOS removal is possibly due to the high activity of electron transfer with a higher redox potential of SO4•- than •OH. The highly stable F- generation was obtained from each electrode during reproducibility (n = 3). The net energy consumption from Ag/Au-PAA/PAH electrode was 164.9 kWh m-3 for 72% PFOA removal and 90 kWh m-3 for 91% PFOS removal, respectively. The developed Au-PAA/PAH electrodes were applied to lake water samples and showed acceptable PFOS removal (65%) with relative standard deviations (RSD) of 10.2% (n = 3) at 10 mA cm-2 of current density. Overall, the NP-embedded hydrogel nanofibers were proven to be a promising sustainable catalyst for the electrochemical PFAS oxidation in water.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Nanopartículas , Caprilatos , Eletrodos , Fluorocarbonos/análise , Hidrogéis , Oxirredução , Reprodutibilidade dos Testes , Água
6.
Trends Microbiol ; 30(1): 6-9, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610897

RESUMO

Bioaugmenting lignocellulose digestion with potent lignocellulolytic microbiomes (LMs) facilitates efficient biomethanation. Assessing the metabolic roles of microbial communities of the LMs and their complex interactions with the indigenous anaerobic digester microbiome is pivotal in implementing bioaugmentation. Multiple meta-omics are the frontline approaches to investigating gene functions, metabolic roles, and the ecological niches of LMs.


Assuntos
Lignina , Microbiota , Anaerobiose , Lignina/metabolismo
7.
Micromachines (Basel) ; 12(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205934

RESUMO

A novel Au nanoparticle (AuNP)-biopolymer coated carbon screen-printed electrode (SPE) sensor was developed through the co-electrodeposition of Au and chitosan for mercury (Hg) ion detection. This new sensor showed successful Hg2+ detection in landfill leachate using square wave anodic stripping voltammetry (SWASV) with an optimized condition: a deposition potential of -0.6 V, deposition time of 200 s, amplitude of 25 mV, frequency of 60 Hz, and square wave step voltage of 4 mV. A noticeable peak was observed at +0.58 V associated with the stripping current of the Hg ion. The sensor exhibited a good sensitivity of ~0.09 µA/µg (~0.02 µA/nM) and a linear response over the concentration range of 10 to 100 ppb (50-500 nM). The limit of detection (LOD) was 1.69 ppb, which is significantly lower than the safety limit defined by the United States Environmental Protection Agency (USEPA). The sensor had an excellent selective response to Hg2+ in landfill leachate against other interfering cations (e.g., Zn2+, Pb2+, Cd2+, and Cu2+). Fifteen successive measurements with a stable peak current and a lower relative standard deviation (RSD = 5.1%) were recorded continuously using the AuNP-biopolymer-coated carbon SPE sensor, which showed excellent stability, sensitivity and reproducibility and consistent performance in detecting the Hg2+ ion. It also exhibited a good reliability and performance in measuring heavy metals in landfill leachate.

8.
J Power Sources ; 4842021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33627935

RESUMO

Microbial fuel cells (MFCs) have recently been applied to generate electricity from oily wastewater. Although MFCs that utilize microalgae to provide a self-supporting oxygen (O2) supply at the cathode have been well discussed, those with microalgae at the anode as an active biomass for treating wastewater and producing electrons are still poorly studied and understood. Here, we demonstrated a bilgewater treatment using single- and double-chamber microalgal fuel cells (SMAFC and DMAFC) capable of generating energy with a novel microalgal strain (Chlorella sorokiniana) that was initially isolated from oily wastewater. Compared to previous MFC studies using green algae, relatively high voltage output (151.3-160.1 mV, 71.3-83.4 mV m-2 of power density) was observed in the SMAFC under O2 controlled systems (i.e., acetate addition or light/dark cycle). It was assumed that, under the O2 depletion, alternative electron acceptors such as bicarbonate may be utilized for power generation. A DMAFC showed better power density (up to 23.9%) compared to the SMAFC due to the separated cathode chamber which fully utilizes O2 as an electron acceptor. Both SMAFC and DMAFC removed 67.2-77.4% of soluble chemical oxygen demands (SCOD) from the synthetic bilgewater. This study demonstrates that the application of algae-based MFCs is a feasible strategy to treat oil-in-water emulsion while generating electricity.

9.
Trends Microbiol ; 28(12): 968-984, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33171105

RESUMO

Biomethanation through anaerobic digestion (AD) is the most reliable energy harvesting process to achieve waste-to-energy. Microbial communities, including hydrolytic and fermentative bacteria, syntrophic bacteria, and methanogenic archaea, and their interspecies symbioses allow complex metabolisms for the volumetric reduction of organic waste in AD. However, heterogeneity in organic waste induces community shifts in conventional anaerobic digesters treating sewage sludge at wastewater treatment plants globally. Assessing the metabolic roles of individual microbial species in syntrophic communities remains a challenge, but such information has important implications for microbially enhanced energy recovery. This review focuses on the alterations in digester microbiome and intricate interspecies networks during substrate variation, symbiosis among the populations, and their implications for biomethanation to aid stable operation in real-scale digesters.


Assuntos
Microbiota/fisiologia , Simbiose/fisiologia , Anaerobiose , Archaea/fisiologia , Bactérias , Fenômenos Fisiológicos Bacterianos , Reatores Biológicos/microbiologia , Fermentação , Lipídeos , Redes e Vias Metabólicas , Polissacarídeos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Águas Residuárias , Purificação da Água
10.
Micromachines (Basel) ; 11(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650577

RESUMO

Per- and poly-fluoroalkyl substances (PFASs) have recently been labeled as toxic constituents that exist in many aqueous environments. However, traditional methods used to determine the level of PFASs are often not appropriate for continuous environmental monitoring and management. Based on the current state of research, PFAS-detecting sensors have surfaced as a promising method of determination. These sensors are an innovative solution with characteristics that allow for in situ, low-cost, and easy-to-use capabilities. This paper presents a comprehensive review of the recent developments in PFAS-detecting sensors, and why the literature on determination methods has shifted in this direction compared to the traditional methods used. PFAS-detecting sensors discussed herein are primarily categorized in terms of the detection mechanism used. The topics covered also include the current limitations, as well as insight on the future direction of PFAS analyses. This paper is expected to be useful for the smart sensing technology development of PFAS detection methods and the associated environmental management best practices in smart cities of the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...