Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 392: 90-95, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38950627

RESUMO

α,ω-Dicarboxylic acids, ω-aminoalkanoic acids, and α,ω-diaminoalkanes are valuable building blocks for the production of biopolyesters and biopolyamides. One of the key steps in producing these chemicals is the oxidation of ω-hydroxycarboxylic acids using alcohol dehydrogenases (e.g., ChnD of Acinetobacter sp. NCIMB 9871). However, the reaction and structural features of these enzymes remain mostly undiscovered. Thereby, we have investigated characteristics of ChnD based on enzyme kinetics, substrate-docking simulations, and mutation studies. Kinetic analysis revealed a distinct preference of ChnD for medium chain ω-hydroxycarboxylic acids, with the highest catalytic efficiency of 18.0 mM-1s-1 for 12-hydroxydodecanoic acid among C6 to C12 ω-hydroxycarboxylic acids. The high catalytic efficiency was attributed to the positive interactions between the carboxyl group of the substrates and the guanidino group of two arginine residues (i.e., Arg62 and Arg266) in the substrate binding site. The ChnD_R62L variant showed the increased efficiency and affinity, particularly for fatty alcohols (i.e., C6-C10) and branched-chain fatty alcohols, such as 3-methyl-2-buten-1-ol. Overall, this study contributes to the deeper understanding of medium-chain primary aliphatic alcohol dehydrogenases and their applications for the production of industrially relevant chemicals such as α,ω-dicarboxylic acids, ω-aminoalkanoic acids, and α,ω-diaminoalkanes from renewable biomass.


Assuntos
Acinetobacter , Acinetobacter/enzimologia , Acinetobacter/genética , Especificidade por Substrato , Cinética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Simulação de Acoplamento Molecular , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Modelos Moleculares
2.
Sci Rep ; 12(1): 9397, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672399

RESUMO

Photobiocatalysis is a growing field of biocatalysis. Especially light-driven enzyme catalysis has contributed significantly to expanding the scope of synthetic organic chemistry. However, photoenzymes usually utilise a rather narrow wavelength range of visible (sun)light. Triplet-triplet annihilation-based upconversion (TTA-UC) of long wavelength light to shorter wavelength light may broaden the wavelength range. To demonstrate the feasibility of light upconversion we prepared TTA-UC poly(styrene) (PS) nanoparticles doped with platinum(II) octaethylporphyrin (PtOEP) photosensitizer and 9,10-diphenylanthracene (DPA) annihilator (PtOEP:DPA@PS) for application in aqueous solutions. Photoexcitation of PtOEP:DPA@PS nanoparticles with 550 nm light led to upconverted emission of DPA 418 nm. The TTA-UC emission could photoactivate flavin-dependent photodecarboxylases with a high energy transfer efficiency. This allowed the photodecarboxylase from Chlorella variabilis NC64A to catalyse the decarboxylation of fatty acids into long chain secondary alcohols under green light (λ = 550 nm).


Assuntos
Chlorella , Nanopartículas , Transferência de Energia , Fótons , Fármacos Fotossensibilizantes
3.
Angew Chem Int Ed Engl ; 59(18): 7024-7028, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31957098

RESUMO

Long-chain aliphatic amines such as (S,Z)-heptadec-9-en-7-amine and 9-aminoheptadecane were synthesized from ricinoleic acid and oleic acid, respectively, by whole-cell cascade reactions using the combination of an alcohol dehydrogenase (ADH) from Micrococcus luteus, an engineered amine transaminase from Vibrio fluvialis (Vf-ATA), and a photoactivated decarboxylase from Chlorella variabilis NC64A (Cv-FAP) in a one-pot process. In addition, long chain aliphatic esters such as 10-(heptanoyloxy)dec-8-ene and octylnonanoate were prepared from ricinoleic acid and oleic acid, respectively, by using the combination of the ADH, a Baeyer-Villiger monooxygenase variant from Pseudomonas putida KT2440, and the Cv-FAP. The target compounds were produced at rates of up to 37 U g-1 dry cells with conversions up to 90 %. Therefore, this study contributes to the preparation of industrially relevant long-chain aliphatic chiral amines and esters from renewable fatty acid resources.


Assuntos
Álcool Desidrogenase/metabolismo , Aminas/metabolismo , Carboxiliases/metabolismo , Ésteres/metabolismo , Ácido Oleico/metabolismo , Ácidos Ricinoleicos/metabolismo , Aminas/química , Chlorella/enzimologia , Ésteres/química , Micrococcus luteus/enzimologia , Estrutura Molecular , Ácido Oleico/química , Processos Fotoquímicos , Ácidos Ricinoleicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...