RESUMO
In this study, the sensing properties of palladium-doped porous silicon (Pd/p-Si) substrates for low-ppm level detection of toxic H2S gas are investigated. A Si substrate with dead-end pores ranging from nano- to macroscale was generated by a combined process of metal-assisted chemical etching (MacE) and electrochemical etching with tuned reaction time, in which nano-Pd catalysts were decorated by E-beam sputtering deposition. The sensing properties of the Pd/p-Si were enhanced as the thickness of the substrate layer increased; along with the resulting variation in surface area, this resulted in superior H2S sensing performances in the low-ppm range (less than 3 ppm), with a detection limit of 300 ppb (sensitivity 30%) at room temperature. Furthermore, the sensor displayed excellent selectivity toward the hazardous H2S molecules in comparison with various other reducing gases, including NO2, CO2, NH3, and H2, showing its potential for application in workplaces or environments affected by other toxic gases. The enhancement in sensing performance was possibly due to the increased dispersion and surface area of Pd nano-catalysts, which led to an increase in chemisorption sites of adsorbate molecules.
RESUMO
Strontium ferrite (hexaferrite), SrFe12O19, was successfully fabricated in sizes ranging from hundreds of nanometers to several micrometers by salt-assisted ultrasonic spray pyrolysis-calcination using different salt media. All samples were single phases of SrFe12O19 without the intermediate phase, α-Fe2O3, and their morphology was hexagonal. As calcination temperature increased, the size of as-calcined samples and saturation magnetization, Ms, increased while coercivity decreased. The particle size of the obtained nanoparticles varied depending on the salt media and calcination temperatures. The best magnetic properties obtained in this experiment were a coercivity of 6973 Oe with a saturation magnetization of 68.3 emu/g. To the best of our knowledge, these coercivity values are the highest ever obtained. We propose a detailed mechanism explaining the growth of these particles and conclude that the resulting single-domain particle size is about 70 nm, taking into account of factors affecting coercivity in ferrite nano- to micro-sized particles.