Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(6): 3900-3913, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38867789

RESUMO

Using diffuse correlation spectroscopy, we assessed the renal blood flow and thigh muscle microvascular responses in a rat model of type 2 diabetes. The blood flow index at the renal surface decreased significantly with arterial clamping, cardiac extirpation, and the progression of diabetic endothelial dysfunction. Renal blood flow measured in diabetic and nondiabetic rats also showed a significant correlation with the reactive hyperemic response of the thigh muscle. These results suggest shared microcirculatory dysfunction in the kidney and skeletal muscle and support endothelial responses in the skeletal muscle as a potential noninvasive biomarker of renal hypoperfusion.

2.
J Appl Physiol (1985) ; 136(5): 1053-1064, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38482573

RESUMO

The physiological effects on blood flow and oxygen utilization in active muscles during and after involuntary contraction triggered by electrical muscle stimulation (EMS) remain unclear, particularly compared with those elicited by voluntary (VOL) contractions. Therefore, we used diffuse correlation and near-infrared spectroscopy (DCS-NIRS) to compare changes in local muscle blood flow and oxygen consumption during and after these two types of muscle contractions in humans. Overall, 24 healthy young adults participated in the study, and data were successfully obtained from 17 of them. Intermittent (2-s contraction, 2-s relaxation) isometric ankle dorsiflexion with a target tension of 20% of maximal VOL contraction was performed by EMS or VOL for 2 min, followed by a 6-min recovery period. DCS-NIRS probes were placed on the tibialis anterior muscle, and relative changes in local tissue blood flow index (rBFI), oxygen extraction fraction (rOEF), and metabolic rate of oxygen (rMRO2) were continuously derived. EMS induced more significant increases in rOEF and rMRO2 than VOL exercise but a comparable increase in rBFI. After EMS, rBFI and rMRO2 decreased more slowly than after VOL and remained significantly higher until the end of the recovery period. We concluded that EMS augments oxygen consumption in contracting muscles by enhancing oxygen extraction while increasing oxygen delivery at a rate similar to the VOL exercise. Under the conditions examined in this study, EMS demonstrated a more pronounced and/or prolonged enhancement in local muscle perfusion and aerobic metabolism compared with VOL exercise in healthy participants.NEW & NOTEWORTHY This is the first study to visualize continuous changes in blood flow and oxygen utilization within contracted muscles during and after electrical muscle stimulation (EMS) using combined diffuse correlation and near-infrared spectroscopy. We found that initiating EMS increases blood flow at a rate comparable to that during voluntary (VOL) exercise but enhances oxygen extraction, resulting in higher oxygen consumption. Furthermore, EMS increased postexercise muscle perfusion and oxygen consumption compared with that after VOL exercise.


Assuntos
Estimulação Elétrica , Exercício Físico , Músculo Esquelético , Consumo de Oxigênio , Fluxo Sanguíneo Regional , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Consumo de Oxigênio/fisiologia , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Adulto Jovem , Exercício Físico/fisiologia , Estimulação Elétrica/métodos , Fluxo Sanguíneo Regional/fisiologia , Feminino , Adulto , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Oxigênio/metabolismo , Contração Muscular/fisiologia , Contração Isométrica/fisiologia
3.
Biomed Opt Express ; 14(10): 5358-5375, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37854549

RESUMO

Diffuse correlation spectroscopy faces challenges concerning the contamination of cutaneous and deep tissue blood flow. We propose a long short-term memory network to directly quantify the flow rates of shallow and deep-layer tissues. By exploiting the different contributions of shallow and deep-layer flow rates to auto-correlation functions, we accurately predict the shallow and deep-layer flow rates (RMSE = 0.047 and 0.034 ml/min/100 g of simulated tissue, R2 = 0.99 and 0.99, respectively) in a two-layer flow phantom experiment. This approach is useful in evaluating the blood flow responses of active muscles, where both cutaneous and deep-muscle blood flow increase with exercise.

4.
Pflugers Arch ; 475(4): 527-539, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36645512

RESUMO

Muscle metaboreflex activation during hypercapnia leads to enhanced pressive effects that are poorly understood while autonomic responses including baroreflex function are not documented. Thus, we assessed heart rate variability (HRV) that is partly due to autonomic influences on sinus node with linear tools (spectral analysis of instantaneous heart period), baroreflex set point and sensitivity with the heart period-arterial pressure transfer function and sequences methods, and system coupling through the complexity of RR interval dynamics with nonlinear tools (Poincaré plots and approximate entropy (ApEn)). We studied ten healthy young men at rest and then during muscle metaboreflex activation (MMA, postexercise muscle ischemia) and hypercapnia (HCA, PetCO2 = + 10 mmHg from baseline) separately and combined (MMA + HCA). The strongest pressive responses were observed during MMA + HCA, while baroreflex sensitivity was similarly lowered in the three experimental conditions. HRV was significantly different in MMA + HCA compared to MMA and HCA separately, with the lowest total power spectrum (p < 0.05), including very low frequency (p < 0.05), low frequency (p < 0.05), and high frequency (tendency) power spectra decreases, and the lowest Poincaré plot short-term variability index (SD1): SD1 = 36.2 ms (MMA + HCA) vs. SD1 = 43.1 ms (MMA, p < 0.05) and SD1 = 46.1 ms (HCA, p < 0.05). Moreover, RR interval dynamic complexity was significantly increased only in the MMA + HCA condition (ApEn increased from 1.04 ± 0.04, 1.07 ± 0.02, and 1.05 ± 0.03 to 1.10 ± 0.03, 1.13 ± 0.04, and 1.17 ± 0.03 in MMA, HCA, and MMA + HCA conditions, respectively; p < 0.01). These results suggest that in healthy young men, muscle metaboreflex activation during hypercapnia leads to interactions that reduce parasympathetic influence on the sinus node activity but complexify its dynamics.


Assuntos
Hipercapnia , Reflexo , Masculino , Humanos , Reflexo/fisiologia , Nó Sinoatrial , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia , Barorreflexo/fisiologia , Frequência Cardíaca/fisiologia , Dinâmica não Linear
5.
Res Q Exerc Sport ; 94(4): 1141-1152, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36170018

RESUMO

Purpose: We investigated the effects of pre-exercise voluntary hyperventilation and the resultant hypocapnia on metabolic and cardiovascular responses during and after high-intensity exercise. Methods: Ten healthy participants performed a 60-s cycling exercise at a workload of 120% peak oxygen uptake in control (spontaneous breathing), hypocapnia and normocapnia trials. Hypocapnia was induced through 20-min pre-exercise voluntary hyperventilation. In the normocapnia trial, voluntary hyperpnea was performed with CO2 inhalation to prevent hypocapnia. Results: Pre-exercise end-tidal CO2 partial pressure was lower in the hypocapnia trial than the control or normocapnia trial, with similar levels in the control and normocapnia trials. Average V˙O2 during the entire exercise was lower in both the hypocapnia and normocapnia trials than in the control trial (1491 ± 252vs.1662 ± 169vs.1806 ± 149 mL min-1), with the hypocapnia trial exhibiting a greater reduction than the normocapnia trial. Minute ventilation during exercise was lower in the hypocapnia trial than the normocapnia trial. In addition, minute ventilation during the first 10s of the exercise was lower in the normocapnia than the control trial. Pre-exercise hypocapnia also reduced heart rates and arterial blood pressures during the exercise relative to the normocapnia trial, a response that lasted through the subsequent early recovery periods, though end-tidal CO2 partial pressure was similar in the two trials. Conclusions: Our results suggest that pre-exercise hyperpnea and the resultant hypocapnia reduce V˙O2 during high-intensity exercise. Moreover, hypocapnia may contribute to voluntary hyperventilation-mediated cardiovascular responses during the exercise, and this response can persist into the subsequent recovery period, despite the return of arterial CO2 pressure to the normocapnic level.


Assuntos
Hiperventilação , Hipocapnia , Humanos , Hipocapnia/metabolismo , Dióxido de Carbono , Consumo de Oxigênio/fisiologia
6.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R720-R727, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121147

RESUMO

Rapid regulation of arterial blood pressure on a beat-by-beat basis occurs primarily via arterial baroreflex control of cardiac output (CO) via rapid changes in heart rate (HR). Previous studies have shown that changes in HR do not always cause changes in CO, because stroke volume may vary. Whether these relationships are altered in hypertension is unknown. Using the spontaneous baroreflex sensitivity (SBRS) approach, we investigated whether baroreflex control of HR and CO were impaired after the induction of hypertension in conscious, chronically instrumented canines at rest, during mild exercise, and during exercise with metaboreflex activation (induced via reductions in hindlimb blood flow) both before and after induction of hypertension (induced via a modified Goldblatt approach-unilateral reduction in renal blood flow to ∼30% of control values until systolic pressure ≥ 140 mmHg and a diastolic pressure ≥ 90 mmHg for >30 days). After induction of hypertension, SBRS control of both HR and CO was reduced in all settings. In control, only about 50% of SBRS changes in HR caused changes in CO. This pattern was sustained in hypertension. Thus, in hypertension, the reduced SBRS in the control of HR caused reduced SBRS control of CO and this likely contributes to the increased incidence of orthostatic hypotension seen in hypertensive patients.


Assuntos
Barorreflexo , Hipertensão , Cães , Animais , Barorreflexo/fisiologia , Frequência Cardíaca/fisiologia , Músculo Esquelético/fisiologia , Débito Cardíaco/fisiologia , Pressão Sanguínea/fisiologia
7.
Physiol Rep ; 10(8): e15274, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35466573

RESUMO

The purpose of this study was to investigate the effects of a rise in arterial carbon dioxide pressure (PaCO2 ) on vascular and blood flow responses in the cerebral circulation and active skeletal muscles during dynamic exercise in humans. Thirteen healthy young adults (three women) participated in hypercapnia and normocapnia trials. In both trials, participants performed a two-legged dynamic knee extension exercise at a constant workload that increased heart rate to roughly 100 beats min-1 . In the hypercapnia trial, participants performed the exercise with spontaneous breathing while end-tidal carbon dioxide pressure (PET CO2 ), an index of PaCO2 , was held at 60 mmHg by inhaling hypercapnic gas (O2 : 20.3 ± 0.1%; CO2 : 6.0 ± 0.5%). In the normocapnia trial, minute ventilation during exercise was matched to the value in the hypercapnia trial by performing voluntary hyperventilation with PET CO2 clamped at baseline level (i.e., 40-45 mmHg) through inhalation of mildly hypercapnic gas (O2 : 20.6 ± 0.1%; CO2 : 2.7 ± 1.0%). Middle cerebral artery mean blood velocity and the cerebral vascular conductance index were higher in the hypercapnia trial than in the normocapnia trial. By contrast, vascular conductance in the exercising leg was lower in the hypercapnia trial than in the normocapnia trial. Blood flow to the exercising leg did not differ between the two trials. These results demonstrate that hypercapnia-induced vasomotion in active skeletal muscles is opposite to that in the cerebral circulation. These differential vascular responses may cause a preferential rise in cerebral blood flow.


Assuntos
Dióxido de Carbono , Hipercapnia , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea/fisiologia , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Músculo Esquelético/fisiologia , Adulto Jovem
8.
Front Bioeng Biotechnol ; 9: 800051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087803

RESUMO

Manipulative therapy (MT) is applied to motor organs through a therapist's hands. Although MT has been utilized in various medical treatments based on its potential role for increasing the blood flow to the local muscle, a quantitative validation of local muscle blood flow in MT remains challenging due to the lack of appropriate bedside evaluation techniques. Therefore, we investigated changes in the local blood flow to the muscle undergoing MT by employing diffuse correlation spectroscopy, a portable and emerging optical measurement technology that non-invasively measures blood flow in deep tissues. This study investigated the changes in blood flow, heart rate, blood pressure, and autonomic nervous activity in the trapezius muscle through MT application in 30 volunteers without neck and shoulder injury. Five minutes of MT significantly increased the median local blood flow relative to that of the pre-MT period (p < 0.05). The post-MT local blood flow increase was significantly higher in the MT condition than in the control condition, where participants remained still without receiving MT for the same time (p < 0.05). However, MT did not affect the heart rate, blood pressure, or cardiac autonomic nervous activity. The post-MT increase in muscle blood flow was significantly higher in the participants with muscle stiffness in the neck and shoulder regions than in those without (p < 0.05). These results suggest that MT could increase the local blood flow to the target skeletal muscle, with minimal effects on systemic circulatory function.

9.
Eur J Sport Sci ; 21(8): 1148-1155, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32814502

RESUMO

AbstractTwenty minutes of voluntary hypocapnic hyperventilation prior to exercise reduces the aerobic metabolic rate with a compensatory increase in the anaerobic metabolic rate without affecting exercise performance during the Wingate anaerobic test (WAnT). Thus, pre-exercise hypocapnic hyperventilation may be a useful means of stressing the anaerobic energy system during training, ultimately improving anaerobic exercise performance. However, it remains unclear whether a shorter (e.g., 5 min) pre-exercise hypocapnic hyperventilation is sufficient to reduce the aerobic metabolic rate during high-intensity exercise. We therefore compared the effects of 5-min and 20-min pre-exercise hypocapnic hyperventilation on aerobic metabolism during the 30-s WAnT. Ten healthy young males and one female performed the WAnT following 20 min of spontaneous breathing (control trial) or 5 or 20 min of voluntary hypocapnic hyperventilation. Both the 5-min and 20-min hyperventilation reduced end-tidal CO2 partial pressure (an index of arterial CO2 partial pressure) to ∼23 mmHg, whereas it remained unchanged during the spontaneous breathing. The peak, mean and minimum power outputs during the WAnT did not differ among the three trials. Oxygen uptake during the WAnT was lower in both the 5-min (1493 ± 257 mL min-1) and 20-min (1397 ± 447 mL min-1) hyperventilation trials than during the control trial (1847 ± 286 mL min-1), and was similar in the two hyperventilation trials. These results suggest that 5 min of pre-exercise hypocapnic hyperventilation reduces aerobic metabolism during the 30-s WAnT to a level similar to that seen with the 20-min hyperventilation. Moreover, exercise performance was unaffected, which implies anaerobic metabolism was enhanced.


Assuntos
Desempenho Atlético/fisiologia , Metabolismo Energético , Exercício Físico/fisiologia , Hiperventilação/fisiopatologia , Hipocapnia/fisiopatologia , Anaerobiose , Exercícios Respiratórios/métodos , Teste de Esforço/métodos , Feminino , Frequência Cardíaca , Humanos , Masculino , Consumo de Oxigênio , Percepção/fisiologia , Esforço Físico/fisiologia , Adulto Jovem
10.
Am J Physiol Heart Circ Physiol ; 320(2): H654-H667, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337963

RESUMO

Previous studies showed that conduit artery blood flow rapidly increases after even a brief contraction of muscles within the dependent limb. Whether this rapid hyperemia occurs within contracted skeletal muscle in humans has yet to be confirmed, however. We therefore used diffuse correlation spectroscopy (DCS) to characterize the rapid hyperemia and vasodilatory responses within the muscle microvasculature induced by single muscle contractions in humans. Twenty-five healthy male volunteers performed single 1-s isometric handgrips at 20%, 40%, 60%, and 80% of maximum voluntary contraction. DCS probes were placed on the flexor digitorum superficialis muscle, and a skeletal muscle blood flow index (SMBFI) was derived continuously. At the same time, brachial artery blood flow (BABF) responses were measured using Doppler ultrasound. Single muscle contractions evoked rapid, monophasic increases in both SMBFI and BABF that occurred within 3 s after release of contraction. The initial and peak responses increased with increases in contraction intensity and were greater for BABF than for SMBFI at all intensities. BABF reached its peak within 5 to 8 s after the end of contraction. The SMBFI continued to increase after the BABF passed its peak and was decreasing toward the resting level and peaked about 10 to 15 s after completion of the contraction. We conclude that single muscle contractions induce rapid, intensity-dependent hyperemia within the contracted skeletal muscle microvasculature. Moreover, the characteristics of the rapid hyperemia and vasodilatory responses of skeletal muscle microvessels differ from those simultaneously evaluated in the upstream conduit artery.NEW & NOTEWORTHY Through the concurrent use of diffuse correlation spectroscopy and Doppler ultrasound, we provide the first evidence in humans that a single brief muscle contraction evokes rapid, intensity-dependent hyperemia within the contracted skeletal muscle microvasculature and the upstream conduit artery. We also show that the magnitude and time course of the contraction-induced rapid hyperemia and vasodilatory responses within skeletal muscle microvessels significantly differ from those in the conduit artery.


Assuntos
Artéria Braquial/fisiologia , Microcirculação , Microvasos/fisiologia , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Espectroscopia de Luz Próxima ao Infravermelho , Ultrassonografia Doppler , Vasodilatação , Velocidade do Fluxo Sanguíneo , Artéria Braquial/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Hiperemia , Masculino , Microvasos/diagnóstico por imagem , Fluxo Sanguíneo Regional , Fatores de Tempo , Adulto Jovem
11.
Eur J Pharmacol ; 866: 172828, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31790651

RESUMO

The venoarteriolar reflex is a local mechanism that induces vasoconstriction during venous congestion in various tissues, including skin. This response is thought to play a critical role in minimizing capillary damage or edema resulting from overperfusion, though factors that modulate this response remain largely unknown. Here, we hypothesized that nitric oxide synthase (NOS), cyclooxygenase (COX), and Ca2+-activated, ATP-sensitive, and voltage-gated K+ channels (KCa, KATP, and KV channels, respectively) modulate the venoarteriolar reflex in human skin. Cutaneous blood flow (laser-Doppler flowmetry) was monitored during a 3-min pre-occlusion baseline and following a 3-min venous occlusion of 45 mmHg, the latter maneuver was used to induce the venoarteriolar reflex. The venoarteriolar reflex was assessed at the following forearm skin sites: Experiment 1 (n = 11): 1) lactated Ringer solution (Control), 2) 10 mM Nω-nitro-L-arginine (NOS inhibitor), 3) 10 mM ketorolac (COX inhibitor), and 4) combined NOS + COX inhibition; Experiment 2 (n = 15): 1) lactated Ringer solution (Control), 2) 50 mM tetraethylammonium (KCa channel blocker), 3) 5 mM glybenclamide (KATP channel blocker), and 4) 10 mM 4-aminopyridine (KV channel blocker). Separate and combined NOS and COX inhibition as well as KATP channel blocker had no effect on venoarteriolar reflex. Conversely, venoarteriolar reflex was attenuated by KCa channel blockade (36-38%) and augmented by KV channel blockade (38-55%). We showed that KCa and KV channels modulate the venoarteriolar reflex with minimum roles of NOS, COX, and KATP channels in human non-glabrous forearm skin in vivo. Thus, cutaneous venoarteriolar reflex changes could reflect altered K+ channel function.


Assuntos
Arteríolas/fisiologia , Canais de Potássio Cálcio-Ativados/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Pele/irrigação sanguínea , Pele/metabolismo , Veias/fisiologia , Adulto , Humanos , Canais KATP/metabolismo , Masculino , Óxido Nítrico Sintase/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Fluxo Sanguíneo Regional
12.
Microcirculation ; 27(1): e12586, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31435995

RESUMO

OBJECTIVES: Post-occlusive reactive hyperemia (PORH) following arterial occlusion is widely used to assess cutaneous microvascular function, though the underlying mechanisms remain to be fully elucidated. We evaluated the hypothesis that Ca2+ -activated, ATP-sensitive, and voltage-gated K+ channels (KCa , KATP , and KV channels, respectively) contribute to PORH while nitric oxide synthase (NOS) and cyclooxygenase (COX) do not. METHODS: On separate occasions, cutaneous blood flow (laser Doppler flowmetry) was monitored before and following 5-min arterial occlusion at forearm skin sites treated via microdialysis with the following: Experiment 1 (n = 11): (a) lactated Ringer solution (Control), (b) 10 mM Nω -nitro-L -arginine (NOS inhibitor), (c) 10 mM ketorolac (COX inhibitor), and (d) combined NOS+COX inhibition; Experiment 2 (n = 14): (a) lactated Ringer solution (Control), (b) 50 mM tetraethylammonium (non-selective KCa channel blocker), (c) 5 mM glibenclamide (non-specific KATP channel blocker), and (d) 10 mM 4-aminopyridine (non-selective KV channel blocker). RESULTS: Separate and combined NOS and COX inhibition did not influence PORH. Conversely, tetraethylammonium and glibenclamide attenuated, whereas 4-aminopyridine augmented PORH. CONCLUSIONS: We showed that tetraethylammonium, glibenclamide, and 4-aminopyridine modulate PORH with no roles of NOS and COX in human non-glabrous forearm skin in vivo. Thus, cutaneous PORH changes could reflect altered K+ channel function.


Assuntos
4-Aminopiridina/administração & dosagem , Glibureto/administração & dosagem , Hiperemia/metabolismo , Óxido Nítrico Sintase/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Pele/irrigação sanguínea , Pele/metabolismo , Tetraetilamônio/administração & dosagem , Adulto , Humanos , Masculino , Pele/fisiopatologia
13.
Physiol Rep ; 7(7): e14070, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30980512

RESUMO

We investigated the integration of sympathetic vasoconstriction and local vasodilation in the skeletal muscle and skin microvasculature of humans. In 39 healthy volunteers, we simultaneously measured the blood flow index in the flexor carpi radialis muscle using diffuse correlation spectroscopy and the skin using laser-Doppler flowmetry. We examined the effects of acute sympathoexcitation induced by forehead cooling on relatively weak and robust vasodilatory responses during postocclusive reactive hyperemia (PORH) induced by 70-sec and 10-min arterial occlusion in the upper arm. To increase sympathetic tone during PORH, forehead cooling was begun 60 sec before the occlusion release and ended 60 sec after the release. In the 70-sec occlusion trials, acute sympathoexcitation reduced the peak and duration of vasodilation in both skeletal muscle and skin. The inhibition of vasodilation by sympathoexcitation was blunted in both tissues by the robust vasodilatory stimulation produced by the 10-min occlusion, and the degree of blunting was greater in skeletal muscle than in skin, especially the initial and peak responses. Sympathoexcitation reduced the peak vasodilation only in skin, while it accelerated the initial vasodilation only in skeletal muscle. However, the decline in vasodilation after the peak was significantly hastened in skeletal muscle, shortening the duration of the vasodilation. We conclude that, in humans, the integration of sympathetic vasoconstriction and local vasodilation has different effects in skeletal muscle and skin and is likely an important contributor to the selective control of perfusion in the microcirculations of different tissues.


Assuntos
Microvasos/fisiologia , Músculo Esquelético/irrigação sanguínea , Pele/irrigação sanguínea , Sistema Nervoso Simpático/fisiopatologia , Vasoconstrição/fisiologia , Vasodilatação/fisiologia , Feminino , Antebraço/fisiopatologia , Voluntários Saudáveis , Humanos , Hiperemia/fisiopatologia , Fluxometria por Laser-Doppler , Masculino , Fluxo Sanguíneo Regional/fisiologia , Adulto Jovem
14.
Am J Physiol Heart Circ Physiol ; 315(2): H242-H253, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29652542

RESUMO

We used diffuse correlation spectroscopy to investigate sympathetic vasoconstriction, local vasodilation, and integration of these two responses in the skeletal muscle microvasculature of 20 healthy volunteers. Diffuse correlation spectroscopy probes were placed on the flexor carpi radialis muscle or vastus lateralis muscle, and a blood flow index was derived continuously. We measured hemodynamic responses during sympathoexcitation induced by forehead cooling, after which the effects of the increased sympathetic tone on vasodilatory responses during postocclusive reactive hyperemia (PORH) were examined. PORH was induced by releasing arterial occlusion (3 min) in an arm or leg. To increase sympathetic tone during PORH, forehead cooling was begun 60 s before the occlusion release and ended 60 s after the release. During forehead cooling, mean arterial pressure rose significantly and was sustained at an elevated level. Significant vasoconstriction and decreases in blood flow index followed by gradual blunting of the vasoconstriction also occurred. The time course of these responses is in good agreement with previous observations in animals. The acute sympathoexcitation diminished the peak vasodilation during PORH only in the vastus lateralis muscle, but it hastened the decline in vasodilation after the peak in both the flexor carpi radialis muscle and vastus lateralis muscle. Consequently, the total vasodilatory response assessed as the area of the vascular conductance during the first minute of PORH was significantly diminished in both regions. We conclude that, in humans, the integrated effects of sympathetic vasoconstriction and local vasodilation have an important role in vascular regulation and control of perfusion in the skeletal muscle microcirculation. NEW & NOTEWORTHY We used diffuse correlation spectroscopy to demonstrate that acute sympathoexcitation constrains local vasodilation in the human skeletal muscle microvasculature during postocclusive reactive hyperemia. This finding indicates that integration of sympathetic vasoconstriction and local vasodilation is importantly involved in vascular regulation and the control of perfusion of the skeletal muscle microcirculation in humans.


Assuntos
Hiperemia/fisiopatologia , Microvasos/fisiologia , Músculo Esquelético/irrigação sanguínea , Sistema Nervoso Simpático/fisiologia , Vasoconstrição , Vasodilatação , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Fluxo Sanguíneo Regional , Adulto Jovem
15.
Am J Physiol Heart Circ Physiol ; 314(3): H434-H442, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101169

RESUMO

Voluntary apnea during dynamic exercise evokes marked bradycardia, peripheral vasoconstriction, and pressor responses. However, the mechanism(s) underlying the cardiovascular responses seen during apnea in exercising humans is unknown. We therefore tested the hypothesis that the muscle metaboreflex contributes to the apnea-induced pressor response during dynamic exercise. Thirteen healthy subjects participated in apnea and control trials. In both trials, subjects performed a two-legged dynamic knee extension exercise at a workload that elicited heart rates at ~100 beats/min. In the apnea trial, after reaching a steady state, subjects began voluntary apnea. Immediately after cessation of the apnea, arterial occlusion was initiated at both thighs and the subjects stopped exercising. The occlusion was sustained for 3 min in the postexercise period. In the control trial, the occlusion was started without subjects performing the apnea. The apnea induced marked bradycardia, pressor responses, and decreases in arterial O2 saturation, cardiac output, and total vascular conductance. In addition, arterial blood pressure was significantly higher and total vascular conductance was significantly lower in the apnea trials than the control trials throughout the occlusion period. In separate sessions, we measured apnea-induced changes in exercising leg blood flow in the same subjects. Leg blood flow was significantly reduced by apnea and reached the resting level at the peak of the apnea response. We conclude that the muscle metaboreflex is activated by the decrease in O2 delivery to the working muscle during apnea in exercising humans and contributes to the large pressor response. NEW & NOTEWORTHY We demonstrated that apnea during dynamic exercise activates the muscle metaboreflex in humans. This result indicates that a reduction in O2 delivery to working muscle triggers the muscle metaboreflex during apnea. Activation of the muscle metaboreflex is one of the mechanisms underlying the marked apnea-induced pressor response.


Assuntos
Apneia/fisiopatologia , Células Quimiorreceptoras/metabolismo , Metabolismo Energético , Exercício Físico , Hemodinâmica , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/inervação , Reflexo , Adaptação Fisiológica , Apneia/metabolismo , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Fatores de Tempo , Volição , Adulto Jovem
16.
Biomed Opt Express ; 9(9): 4539-4551, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615744

RESUMO

We propose a novel application of diffuse correlation spectroscopy to evaluate microvascular malfunctions of muscle tissue affected by hyperglycemia and determine their correlation with the severity of diabetic neuropathy at a later stage. Microvascular responses of the thigh muscle and the mechanical pain threshold of the hind paw of streptozotocin-induced type I diabetic rats were continuously monitored once per week for 70 days. Significantly decreased baseline blood flow and reactive hyperemia responses were observed as early as 1 week after hyperglycemia induction. The reactive hyperemia response at 2 weeks of hyperglycemia was highly correlated with the mechanical pain threshold at 8 weeks, at which time a decreased pain threshold was statistically confirmed in hyperglycemic rats relative to controls.

17.
Am J Physiol Heart Circ Physiol ; 313(3): H650-H657, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28687588

RESUMO

The purpose of the present study was to test our hypothesis that unloading the carotid baroreceptors alters the threshold and gain of the muscle metaboreflex in humans. Ten healthy subjects performed a static handgrip exercise at 50% of maximum voluntary contraction. Contraction was sustained for 15, 30, 45, and 60 s and was followed by 3 min of forearm circulatory arrest, during which forearm muscular pH is known to decrease linearly with increasing contraction time. The carotid baroreceptors were unloaded by applying 0.1-Hz sinusoidal neck pressure (oscillating from +15 to +50 mmHg) during ischemia. We estimated the threshold and gain of the muscle metaboreflex by analyzing the relationship between the cardiovascular responses during ischemia and the amount of work done during the exercise. In the condition with unloading of the carotid baroreceptors, the muscle metaboreflex thresholds for mean arterial blood pressure (MAP) and total vascular resistance (TVR) corresponded to significantly lower work levels than the control condition (threshold for MAP: 795 ± 102 vs. 662 ± 208 mmHg and threshold for TVR: 818 ± 213 vs. 572 ± 292 kg·s, P < 0.05), but the gains did not differ between the two conditions (gain for MAP: 4.9 ± 1.7 vs. 4.4 ± 1.6 mmHg·kg·s-1·100 and gain for TVR: 1.3 ± 0.8 vs. 1.3 ± 0.7 mmHg·l-1·min-1·kg·s-1·100). We conclude that the carotid baroreflex modifies the muscle metaboreflex threshold in humans. Our results suggest the carotid baroreflex brakes the muscle metaboreflex, thereby inhibiting muscle metaboreflex-mediated pressor and vasoconstriction responses.NEW & NOTEWORTHY We found that unloading the carotid baroreceptors shifts the pressor threshold of the muscle metaboreflex toward lower metabolic stimulation levels in humans. This finding indicates that, in the normal loading state, the carotid baroreflex inhibits the muscle metaboreflex pressor response by shifting the reflex threshold to higher metabolic stimulation levels.


Assuntos
Barorreflexo , Artérias Carótidas/inervação , Células Quimiorreceptoras/fisiologia , Metabolismo Energético , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/inervação , Pressorreceptores/fisiologia , Vasoconstrição , Adolescente , Adulto , Pressão Arterial , Feminino , Antebraço , Força da Mão , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Isquemia/metabolismo , Isquemia/fisiopatologia , Masculino , Inibição Neural , Fluxo Sanguíneo Regional , Fatores de Tempo , Resistência Vascular , Adulto Jovem
18.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1332-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053652

RESUMO

We examined whether the sustained activation of metaboreceptor in forearm during cycling exercise can modulate sweating and cutaneous vasodilation. On separate days, 12 young participants performed a 1.5-min isometric handgrip exercise at 40% maximal voluntary contraction followed by 1) 9-min forearm ischemia (Occlusion, to activate metaboreceptor) or 2) no ischemia (Control) in thermoneutral conditions (27°C, 50%) with mean skin temperature clamped at 34°C. Thirty seconds after the handgrip exercise, participants cycled for 13.5 min at 40% V̇o2 max For Occlusion, forearm ischemia was maintained for 9 min followed by no ischemia thereafter. Local sweat rate (SR, ventilated capsule) and cutaneous vascular conductance (CVC, laser-Doppler perfusion units/mean arterial pressure) on the contralateral nonischemic arm as well as esophageal and skin temperatures were measured continuously. The period of ischemia in the early stages of exercise increased SR (+0.03 mg·cm(-2)·min(-1), P < 0.05) but not CVC (P > 0.05) above Control levels. No differences were measured in the esophageal temperature at which onset of sweating (Control 37.19 ± 0.09 vs. Occlusion 37.07 ± 0.09°C) or CVC (Control 37.21 ± 0.08 vs. Occlusion 37.08 ± 0.10°C) as well as slopes for these responses (all P > 0.05). However, a greater elevation in SR occurred thereafter such that SR was significantly elevated at the end of the ischemic period relative to Control (0.37 ± 0.05 vs. 0.23 ± 0.05 mg·cm(-2)·min(-1), respectively, P < 0.05) despite no differences in esophageal temperature. We conclude that the activation of forearm muscle metaboreceptor can modulate sweating, but not CVC, during cycling exercise without affecting the core temperature-SR relationship.


Assuntos
Células Quimiorreceptoras/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Pele/irrigação sanguínea , Sudorese/fisiologia , Vasodilatação/fisiologia , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Antebraço/fisiologia , Humanos , Masculino , Temperatura Cutânea/fisiologia
19.
Am J Physiol Regul Integr Comp Physiol ; 309(10): R1234-42, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26377556

RESUMO

Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Exercício Físico/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Feminino , Humanos , Masculino , Esforço Físico , Pressão , Adulto Jovem
20.
Am J Physiol Regul Integr Comp Physiol ; 309(1): R43-50, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25904685

RESUMO

We characterized the cardiovascular responses to forearm muscle metaboreflex activation during hypercapnia. Ten healthy males participated under three experimental conditions: 1) hypercapnia (HCA, PetCO2 : +10 mmHg, by inhalation of a CO2-enriched gas mixture); 2) muscle metaboreflex activation (MMA, by 5 min of local circulatory occlusion after 1 min of 50% maximum voluntary contraction isometric handgrip under normocapnia); and 3) HCA+MMA. We measured mean arterial pressure (MAP), heart rate (HR), and cardiac output (CO); calculated stroke volume (SV), and total peripheral resistance (TPR); and evaluated myocardial oxygen consumption (MV̇o2) and cardiac work (CW) noninvasively. MAP increased in the three experimental conditions but HCA+MMA led to the highest MAP, CO, and HR. Moreover, HCA+MMA increased SV and was associated with the highest MV̇o2 and CW. HCA and MMA exhibited inhibitory interactions with MAP, HR, TPR, MV̇o2, and CW, increases of which were smaller during HCA+MMA than the sum of the increases during HCA and MMA alone (MAP: +28 ± 2 vs. +34 ± 2 mmHg, P < 0.001; HR: +15 ± 2 vs. +22 ± 3 bpm, P < 0.01; TPR: +1.1 ± 1.4 vs. +3.0 ± 1.5 mmHg·l·min(-1), P < 0.05; MV̇o2: +50.25 ± 4.74 vs. +59.48 ± 5.37 mmHg·min(-1)·10(-2), P < 0.01; CW: +59.10 ± 7.52 vs. +63.67 ± 7.71 ml mmHg·min(-1)·10(-4), P < 0.05). Oppositely, HCA and MMA interactions were linearly additive for CO (+2.3 ± 0.4 l/min) and SV (+13 ± 4 ml). We showed that muscle metaboreflex and hypercapnia interact in healthy humans, reducing vasoconstriction but enhancing SV.


Assuntos
Células Quimiorreceptoras/metabolismo , Metabolismo Energético , Hemodinâmica , Hipercapnia/fisiopatologia , Músculo Esquelético/inervação , Reflexo , Adulto , Pressão Arterial , Antebraço , Frequência Cardíaca , Humanos , Hipercapnia/metabolismo , Contração Isométrica , Masculino , Músculo Esquelético/metabolismo , Volume Sistólico , Fatores de Tempo , Resistência Vascular , Vasoconstrição , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...