Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 188: 114399, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823854

RESUMO

In the context of replacing animal proteins in food matrices, rice proteins (RP) become promised because they come from an abundant plant source, are hypoallergenic, and have high digestibility and nutritional value. However, commercial protein isolates obtained by spray drying have low solubility and poor functionality, especially in their isoelectric point. One way to modify these properties is through interaction with polysaccharides, such as gum arabic (GA). Therefore, this work aims to evaluate the effects of pH and GA concentration on the interaction and emulsifying activity of RP:GA coacervates. First, the effects of pH (2.5 to 7.0) and GA concentrations (0.2 to 1.0 wt%, giving rise to RP:GA mass ratios of 1:0.2 to 1:1.0) in RP:GA blends were evaluated. The results demonstrated that biopolymers present opposite net charges at pH between 2.5 and 4.0. At pH 3.0, insoluble coacervates with complete charge neutralization were formed by electrostatic interactions, while at pH 5.0 it was observed that the presence of GA prevented the RP massive aggregation. Second, selected blends with 0.4 or 1.0 wt% of GA (RP:GA mass ratios of 1:0.4 or 1:1.0) at pH 3.0 or 5.0 were tested for their ability to stabilize oil-in-water emulsions. The emulsions were characterized for 21 days. It was observed that the GA increased the stability of RP emulsions, regardless of the pH and polysaccharide concentration. Taken together, our results show that it is possible to combine RP and GA to improve the emulsifying properties of these plant proteins at pH conditions close to their isoelectric point, expanding the possibility of implementation in food systems.


Assuntos
Emulsões , Goma Arábica , Oryza , Proteínas de Plantas , Polissacarídeos , Água , Goma Arábica/química , Emulsões/química , Concentração de Íons de Hidrogênio , Proteínas de Plantas/química , Oryza/química , Polissacarídeos/química , Água/química , Emulsificantes/química , Solubilidade
2.
Front Chem ; 8: 589503, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282832

RESUMO

In recent years, advanced nanohybrid materials processed as pharmaceuticals have proved to be very advantageous. Triptans, such as the commercially available intranasal sumatriptan (SMT), are drugs employed in the treatment of painful migraine symptoms. However, SMT effectiveness by the intranasal route is limited by its high hydrophilicity and poor mucoadhesion. Therefore, we designed hybrid nanoemulsions (NE) composed of copaiba oil as the organic component plus biopolymers (xanthan, pectin, alginate) solubilized in the continuous aqueous phase, aiming at the intranasal release of SMT (2% w/v). Firstly, drug-biopolymer complexes were optimized in order to decrease the hydrophilicity of SMT. The resultant complexes were further encapsulated in copaiba oil-based nanoparticles, forming NE formulations. Characterization by FTIR-ATR, DSC, and TEM techniques exposed details of the molecular arrangement of the hybrid systems. Long-term stability of the hybrid NE at 25°C was confirmed over a year, regarding size (~ 120 nm), polydispersity (~ 0.2), zeta potential (~ -25 mV), and nanoparticle concentration (~ 2.1014 particles/mL). SMT encapsulation efficiency in the formulations ranged between 41-69%, extending the in vitro release time of SMT from 5 h (free drug) to more than 24 h. The alginate-based NE was selected as the most desirable system and its in vivo nanotoxicity was evaluated in a zebrafish model. Hybrid NE treatment did not affect spontaneous movement or induce morphological changes in zebrafish larvae, and there was no evidence of mortality or cardiotoxicity after 48 h of treatment. With these results, we propose alginate-based nanoemulsions as a potential treatment for migraine pain.

3.
AAPS PharmSciTech ; 21(3): 110, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32215751

RESUMO

Alzheimer's disease has become a public health priority, so an investigation of new therapies is required. Tacrine (TAC) was licensed for treatments; however, its oral administration caused hepatotoxicity, so it is essential to reduce the side effects. PAMAM dendrimer generation 4.0 and 4.5 (DG4.0 and DG4.5) can be used as drug delivery systems and as nanodrugs per se. Our work aims to propose a combined therapy based on TAC and PAMAM dendrimer co-administration. TAC and dendrimer interactions were studied by in vitro drug release, drug stability, and FTIR. The toxicity profile of co-administration was evaluated in human red blood cells, in Neuro-2a cell culture, and in zebrafish larvae. Also, the anti-acetylcholinesterase activity was studied in cell culture. It was possible to obtain DG4.0-TAC and DG4.5-TAC suspensions, without reducing the drug solubility and stability. FTIR and in vitro release studies confirmed that interaction between TAC and DG4.5 was of the electrostatic type. No toxicity effects on human red blood cells were observed, whereas the co-administration with DG4.5 reduced cytotoxicity of TAC on the Neuro-2a cell line. Moreover, in vivo co-administration of both DG4.0-TAC and DG4.5-TAC reduced the morphological and hepatotoxic effects of TAC in zebrafish larvae. The reduction of TAC toxicity was not accompanied by a reduction in its activity since the anti-acetylcholinesterase activity remains when it is co-administrated with dendrimers. In conclusion, the co-administration of TAC with both DG4.0 and DG4.5 is a novel therapy since it was less-toxic, was more biocompatible, and has the same effectiveness than the free drug. Graphical abstract.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/administração & dosagem , Dendrímeros/administração & dosagem , Sistemas de Liberação de Medicamentos , Tacrina/administração & dosagem , Animais , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Estabilidade de Medicamentos , Humanos , Solubilidade , Tacrina/efeitos adversos , Tacrina/química , Peixe-Zebra
4.
J Pharm Sci ; 107(9): 2411-2419, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29802933

RESUMO

Administration of local anesthetics is one of the most effective pain control techniques for postoperative analgesia. However, anesthetic agents easily diffuse into the injection site, limiting the time of anesthesia. One approach to prolong analgesia is to entrap local anesthetic agents in nanostructured carriers (e.g., liposomes). Here, we report that using an ammonium sulphate gradient was the best strategy to improve the encapsulation (62.6%) of dibucaine (DBC) into liposomes. Light scattering and nanotracking analyses were used to characterize vesicle properties, such as, size, polydispersity, zeta potentials, and number. In vitro kinetic experiments revealed the sustained release of DBC (50% in 7 h) from the liposomes. In addition, in vitro (3T3 cells in culture) and in vivo (zebrafish) toxicity assays revealed that ionic-gradient liposomes were able to reduce DBC cyto/cardiotoxicity and morphological changes in zebrafish larvae. Moreover, the anesthesia time attained after infiltrative administration in mice was longer with encapsulated DBC (27 h) than that with free DBC (11 h), at 320 µM (0.012%), confirming it as a promising long-acting liposome formulation for parenteral drug administration of DBC.


Assuntos
Anestésicos Locais/farmacocinética , Anestésicos Locais/toxicidade , Dibucaína/farmacocinética , Dibucaína/toxicidade , Atividade Motora/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Animais , Células 3T3 BALB , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Liberação Controlada de Fármacos , Lipossomos , Masculino , Camundongos , Atividade Motora/fisiologia , Medição da Dor/métodos , Fosfatidilcolinas/farmacocinética , Fosfatidilcolinas/toxicidade , Peixe-Zebra
5.
Int J Pharm ; 544(1): 191-202, 2018 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-29678547

RESUMO

Carbamazepine (CBZ) is an antiepileptic drug, which also could be used in the treatment of neurodegenerative diseases, such as the Alzheimer's disease. However, its use has been limited due to its low solubility, inefficient pharmacokinetic profiles, and multiple side effects. PAMAM dendrimers, ethylenediamine core, generation 4.0 (amine terminal groups) and 4.5 (carboxylate terminal groups) (DG4.0 and DG4.5 respectively) are polymers that can increase drug solubility through complexation. Thus, the aim of this work was to obtain and characterize complexes between CBZ and dendrimers. Both DG4.0 and DG4.5 allowed the incorporation of ∼20 molecules of CBZ per dendrimer, into their hydrophobic pockets. DG4.0-CBZ and DG4.5-CBZ complexes were found to be stable for 90 days at 37 °C and resistant to a lyophilization process, presenting controlled drug release. Also, the complexes nanotoxicity was tested ex vivo (human red blood cells), in vitro (N2a cell line), and in vivo (zebrafish). No hemolytic effect was observed in the ex vivo model. As regards in vitro toxicity, the DG4.5-CBZ complexes significantly reduced the toxicity caused by the free drug. Moreover, the DG4.5-CBZ did not cause neurotoxicity or cardiotoxicity in zebrafish larvae. In conclusion, a stable and biocompatible drug delivery system based on the DG4.5 capable of complex the CBZ has been developed. This achievement highlights the advantages of using negatively charged dendrimers for nanomedicine.


Assuntos
Carbamazepina/administração & dosagem , Dendrímeros/administração & dosagem , Sistemas de Liberação de Medicamentos , Fármacos Neuroprotetores/administração & dosagem , Animais , Carbamazepina/química , Carbamazepina/toxicidade , Linhagem Celular , Células Cultivadas , Dendrímeros/química , Dendrímeros/toxicidade , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Eritrócitos/efeitos dos fármacos , Liofilização , Frequência Cardíaca/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Larva/efeitos dos fármacos , Larva/fisiologia , Locomoção/efeitos dos fármacos , Doenças Neurodegenerativas , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/toxicidade , Peixe-Zebra/anormalidades , Peixe-Zebra/fisiologia
6.
PLoS One ; 12(10): e0186194, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29020107

RESUMO

Different viral and non-viral vectors have been designed to allow the delivery of nucleic acids in gene therapy. In general, non-viral vectors have been associated with increased safety for in vivo use; however, issues regarding their efficacy, toxicity and stability continue to drive further research. Thus, the aim of this study was to evaluate the potential use of the polymerizable diacetylenic lipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) as a strategy to formulate stable cationic lipopolymers in the delivery and protection of plasmid DNA. Cationic lipopolymers were prepared following two different methodologies by using DC8,9PC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and the cationic lipids (CL) 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), stearylamine (SA), and myristoylcholine chloride (MCL), in a molar ratio of 1:1:0.2 (DMPC:DC8,9PC:CL). The copolymerization methodology allowed obtaining cationic lipopolymers which were smaller in size than those obtained by the cationic addition methodology although both techniques presented high size stability over a 166-day incubation period at 4°C. Cationic lipopolymers containing DOTAP or MCL were more efficient in complexing DNA than those containing SA. Moreover, lipopolymers containing DOTAP were found to form highly stable complexes with DNA, able to resist serum DNAses degradation. Furthermore, neither of the cationic lipopolymers (with or without DNA) induced red blood cell hemolysis, although metabolic activity determined on the L-929 and Vero cell lines was found to be dependent on the cell line, the formulation and the presence of DNA. The high stability and DNA protection capacity as well as the reduced toxicity determined for the cationic lipopolymer containing DOTAP highlight the potential advantage of using lipopolymers when designing novel non-viral carrier systems for use in in vivo gene therapy. Thus, this work represents the first steps toward developing a cationic lipopolymer-based gene delivery system using polymerizable and cationic lipids.


Assuntos
Acetileno/química , DNA/metabolismo , Lipídeos/química , Plasmídeos/metabolismo , Polímeros/síntese química , Animais , Bioensaio , Células COS , Cátions , Sobrevivência Celular , Chlorocebus aethiops , Desoxirribonucleases/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Hemólise , Luz , Camundongos , Peso Molecular , Polimerização , Polímeros/química , Espalhamento de Radiação , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...