Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2304074120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38051767

RESUMO

Severity of neurobehavioral deficits in children born from adverse pregnancies, such as maternal alcohol consumption and diabetes, does not always correlate with the adversity's duration and intensity. Therefore, biological signatures for accurate prediction of the severity of neurobehavioral deficits, and robust tools for reliable identification of such biomarkers, have an urgent clinical need. Here, we demonstrate that significant changes in the alternative splicing (AS) pattern of offspring lymphocyte RNA can function as accurate peripheral biomarkers for motor learning deficits in mouse models of prenatal alcohol exposure (PAE) and offspring of mother with diabetes (OMD). An aptly trained deep-learning model identified 29 AS events common to PAE and OMD as superior predictors of motor learning deficits than AS events specific to PAE or OMD. Shapley-value analysis, a game-theory algorithm, deciphered the trained deep-learning model's learnt associations between its input, AS events, and output, motor learning performance. Shapley values of the deep-learning model's input identified the relative contribution of the 29 common AS events to the motor learning deficit. Gene ontology and predictive structure-function analyses, using Alphafold2 algorithm, supported existing evidence on the critical roles of these molecules in early brain development and function. The direction of most AS events was opposite in PAE and OMD, potentially from differential expression of RNA binding proteins in PAE and OMD. Altogether, this study posits that AS of lymphocyte RNA is a rich resource, and deep-learning is an effective tool, for discovery of peripheral biomarkers of neurobehavioral deficits in children of diverse adverse pregnancies.


Assuntos
Diabetes Mellitus , Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Camundongos , Animais , Criança , Humanos , Gravidez , Feminino , Processamento Alternativo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Etanol , Diabetes Mellitus/induzido quimicamente , Biomarcadores/metabolismo , RNA/metabolismo , Transtornos do Espectro Alcoólico Fetal/genética
2.
Front Cell Dev Biol ; 11: 1236356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829185

RESUMO

Introduction: Wnt/ß-catenin signaling controls cell division and lineage specification during embryonic development, and is crucial for stem cells maintenance and gut tissue regeneration in adults. Aberrant activation of Wnt/ß-catenin signaling is also essential for the pathogenesis of a variety of malignancies. The RNA-binding protein IGF2BP1 is a transcriptional target of Wnt/ß-catenin signaling, normally expressed during development and often reactivated in cancer cells, where it regulates the stability of oncogenic mRNA. Methods: In this study, we employed iCLIP and RNA sequencing techniques to investigate the role of IGF2BP1 in the post-transcriptional regulation of Wnt/ß-catenin-induced genes at a global level within colorectal cancer (CRC) cells characterized by constitutively active Wnt/ß-catenin signaling. Results and Discussion: In our study, we show that, in contrast to normal cells, CRC cells exhibit a much stronger dependency on IGF2BP1 expression for Wnt/ß-catenin-regulated genes. We show that both untransformed and CRC cells have their unique subsets of Wnt/ß-catenin-regulated genes that IGF2BP1 directly controls through binding to their mRNA. Our iCLIP analysis revealed a significant change in the IGF2BP1-binding sites throughout the target transcriptomes and a significant change in the enrichment of 6-mer motifs associated with IGF2BP1 binding in response to Wnt/ß-catenin signaling. Our study also revealed a signature of IGF2BP1-regulated genes that are significantly associated with colon cancer-free survival in humans, as well as potential targets for CRC treatment. Overall, this study highlights the complex and context-dependent regulation of Wnt/ß-catenin signaling target genes by IGF2BP1 in non-transformed and CRC cells and identifies potential targets for colon cancer treatment.

3.
Bone Res ; 11(1): 20, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37080994

RESUMO

Longitudinal bone growth relies on endochondral ossification in the cartilaginous growth plate, where chondrocytes accumulate and synthesize the matrix scaffold that is replaced by bone. The chondroprogenitors in the resting zone maintain the continuous turnover of chondrocytes in the growth plate. Malnutrition is a leading cause of growth retardation in children; however, after recovery from nutrient deprivation, bone growth is accelerated beyond the normal rate, a phenomenon termed catch-up growth. Although nutritional status is a known regulator of long bone growth, it is largely unknown whether and how chondroprogenitor cells respond to deviations in nutrient availability. Here, using fate-mapping analysis in Axin2CreERT2 mice, we showed that dietary restriction increased the number of Axin2+ chondroprogenitors in the resting zone and simultaneously inhibited their differentiation. Once nutrient deficiency was resolved, the accumulated chondroprogenitor cells immediately restarted differentiation and formed chondrocyte columns, contributing to accelerated growth. Furthermore, we showed that nutrient deprivation reduced the level of phosphorylated Akt in the resting zone and that exogenous IGF-1 restored the phosphorylated Akt level and stimulated differentiation of the pooled chondroprogenitors, decreasing their numbers. Our study of Axin2CreERT2 revealed that nutrient availability regulates the balance between accumulation and differentiation of chondroprogenitors in the growth plate and further demonstrated that IGF-1 partially mediates this regulation by promoting the committed differentiation of chondroprogenitor cells.

4.
CNS Neurosci Ther ; 28(6): 922-931, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35238164

RESUMO

AIMS: The molecular genetic mechanisms underlying postoperative nausea and vomiting (PONV) in the brain have not been fully elucidated. This study aimed to determine the changes in whole transcriptome in the nucleus of the solitary tract (NTS) in an animal model of PONV, to screen a drug candidate and to elucidate the molecular genetic mechanisms of PONV development. METHODS: Twenty-one female musk shrews were assigned into three groups: the Surgery group (shrew PONV model, n = 9), the Sham group (n = 6), and the Naïve group (n = 6). In behavioral studies, the main outcome was the number of emetic episodes. In genetic experiments, changes in the transcriptome in the NTS were measured. In a separate study, 12 shrews were used to verify the candidate mechanism underlying PONV. RESULTS: A median of six emetic episodes occurred in both the Sham and Surgery groups. Whole-transcriptome analysis indicated the inhibition of the GABAB receptor-mediated signaling pathway in the PONV model. Baclofen (GABAB receptor agonist) administration eliminated emetic behaviors in the shrew PONV model. CONCLUSIONS: Our findings suggest that the GABAB receptor-mediated signaling pathway is involved in emesis and that baclofen may be a novel therapeutic or prophylactic agent for PONV.


Assuntos
Antieméticos , Animais , Antieméticos/uso terapêutico , Baclofeno/farmacologia , Baclofeno/uso terapêutico , Eméticos , Feminino , Perfilação da Expressão Gênica , Náusea e Vômito Pós-Operatórios/tratamento farmacológico , Musaranhos/fisiologia , Núcleo Solitário , Vômito/tratamento farmacológico , Vômito/prevenção & controle
5.
J Neurosci ; 41(31): 6775-6792, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34193554

RESUMO

Epigenetic modifiers are increasingly being investigated as potential therapeutics to modify and overcome disease phenotypes. Diseases of the nervous system present a particular problem as neurons are postmitotic and demonstrate relatively stable gene expression patterns and chromatin organization. We have explored the ability of epigenetic modifiers to prevent degeneration of rod photoreceptors in a mouse model of retinitis pigmentosa (RP), using rd10 mice of both sexes. The histone modification eraser enzymes lysine demethylase 1 (LSD1) and histone deacetylase 1 (HDAC1) are known to have dramatic effects on the development of rod photoreceptors. In the RP mouse model, inhibitors of these enzymes blocked rod degeneration, preserved vision, and affected the expression of multiple genes including maintenance of rod-specific transcripts and downregulation of those involved in inflammation, gliosis, and cell death. The neuroprotective activity of LSD1 inhibitors includes two pathways. First, through targeting histone modifications, they increase accessibility of chromatin and upregulate neuroprotective genes, such as from the Wnt pathway. We propose that this process is going in rod photoreceptors. Second, through nonhistone targets, they inhibit transcription of inflammatory genes and inflammation. This process is going in microglia, and lack of inflammation keeps rod photoreceptors alive.SIGNIFICANCE STATEMENT Retinal degenerations are a leading cause of vision loss. RP is genetically very heterogeneous, and the multiple pathways leading to cell death are one reason for the slow progress in identifying suitable treatments for patients. Here we demonstrate that inhibition of LSD1and HDAC1 in a mouse model of RP leads to preservation of rod photoreceptors and visual function, retaining of expression of rod-specific genes, and with decreased inflammation, cell death, and Müller cell gliosis. We propose that these epigenetic inhibitors cause more open and accessible chromatin, allowing expression of neuroprotective genes. A second mechanism that allows rod photoreceptor survival is suppression of inflammation by epigenetic inhibitors in microglia. Manipulation of epigenetic modifiers is a new strategy to fight neurodegeneration in RP.


Assuntos
Histona Desacetilase 1/antagonistas & inibidores , Histona Desmetilases/antagonistas & inibidores , Degeneração Neural/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/patologia , Tranilcipromina/farmacologia
6.
Genes Brain Behav ; : e12759, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34114352

RESUMO

The genetic mechanisms of postoperative nausea and vomiting (PONV) and the involvement of the catecholamine system in the brain have not been elucidated. Eating kaolin clay as a type of pica has been examined as an alternative behavior to emesis. Here, we evaluated changes in whole-transcriptome analysis in the nucleus of the solitary tract (NTS) in a rat pica model as a surrogate behavior of PONV to elucidate the molecular genetic mechanisms of the development of PONV and the involvement of the catecholamine system in the NTS. First, kaolin pica behaviors were investigated in 71 female Wistar rats following isoflurane anesthesia, surgical insult or morphine administration. Multiple linear regression analysis showed that 3 mg/kg morphine increased kaolin intake by 2.8 g (P = 0.0002). Next, total RNA and protein were extracted from the dissected NTS, and whole-transcriptome sequencing (RNA-seq) was performed to identify PONV-associated genes and to verify the involvement of the catecholamine system. The gene expression levels of tyrosine hydroxylase and dopamine beta-hydroxylase in the catecholamine biosynthesis pathway decreased significantly in the PONV model. Release of noradrenaline, a catecholamine pathway end product, may have increased at the synaptic terminal of the NTS neuron after pica behavior. Systematic administration of α2 adrenergic receptor agonists after surgery reduced kaolin intake from 3.2 g (control) to 1.0 g (P = 0.0014). These results indicated that catecholamine neurotransmission was involved in the development of PONV in the NTS.

7.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34037658

RESUMO

Oncogene-induced senescence (OIS) is a stable cell cycle arrest that occurs in normal cells upon oncogene activation. Cells undergoing OIS express a wide variety of secreted factors that affect the senescent microenvironment termed the senescence-associated secretory phenotype (SASP), which is beneficial or detrimental in a context-dependent manner. OIS cells are also characterized by marked epigenetic changes. We globally assessed histone modifications of OIS cells and discovered an increase in the active histone marks H3K79me2/3. The H3K79 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) was necessary and sufficient for increased H3K79me2/3 occupancy at the IL1A gene locus, but not other SASP genes, and was downstream of STING. Modulating DOT1L expression did not affect the cell cycle arrest. Together, our studies establish DOT1L as an epigenetic regulator of the SASP, whose expression is uncoupled from the senescence-associated cell cycle arrest, providing a potential strategy to inhibit the negative side effects of senescence while maintaining the beneficial inhibition of proliferation.


Assuntos
Senescência Celular , Metilação de DNA , Epigênese Genética , Fibroblastos/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Interleucina-1alfa/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Feminino , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Interleucina-1alfa/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia de Fluorescência , Papiloma/induzido quimicamente , Papiloma/genética , Papiloma/metabolismo , Papiloma/patologia , Fenótipo , Via Secretória , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol
8.
J Perinatol ; 41(3): 551-561, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33177681

RESUMO

OBJECTIVE: Extreme preterm infants are a growing population in neonatal intensive care units who carry a high mortality and morbidity. Multiple factors play a role in preterm birth, resulting in major impact on organogenesis leading to complications including bronchopulmonary dysplasia (BPD). The goal of this study was to identify biomarker signatures associated with prematurity and BPD. STUDY DESIGN: We analyzed miRNA and mRNA profiles in tracheal aspirates (TAs) from 55 infants receiving invasive mechanical ventilation. Twenty-eight infants were extremely preterm and diagnosed with BPD, and 27 were term babies receiving invasive mechanical ventilation for elective procedures. RESULT: We found 22 miRNAs and 33 genes differentially expressed (FDR < 0.05) in TAs of extreme preterm infants with BPD vs. term babies without BPD. Pathway analysis showed associations with inflammatory response, cellular growth/proliferation, and tissue development. CONCLUSIONS: Specific mRNA-miRNA signatures in TAs may serve as biomarkers for BPD pathogenesis, a consequence of extreme prematurity.


Assuntos
Displasia Broncopulmonar , MicroRNAs , Nascimento Prematuro , Displasia Broncopulmonar/genética , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , MicroRNAs/genética , Gravidez , Transcriptoma
9.
Elife ; 92020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33355091

RESUMO

Synapse formation and regulation require signaling interactions between pre- and postsynaptic proteins, notably cell adhesion molecules (CAMs). It has been proposed that the functions of neuroligins (Nlgns), postsynaptic CAMs, rely on the formation of trans-synaptic complexes with neurexins (Nrxns), presynaptic CAMs. Nlgn3 is a unique Nlgn isoform that localizes at both excitatory and inhibitory synapses. However, Nlgn3 function mediated via Nrxn interactions is unknown. Here we demonstrate that Nlgn3 localizes at postsynaptic sites apposing vesicular glutamate transporter 3-expressing (VGT3+) inhibitory terminals and regulates VGT3+ inhibitory interneuron-mediated synaptic transmission in mouse organotypic slice cultures. Gene expression analysis of interneurons revealed that the αNrxn1+AS4 splice isoform is highly expressed in VGT3+ interneurons as compared with other interneurons. Most importantly, postsynaptic Nlgn3 requires presynaptic αNrxn1+AS4 expressed in VGT3+ interneurons to regulate inhibitory synaptic transmission. Our results indicate that specific Nlgn-Nrxn signaling generates distinct functional properties at synapses.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Moléculas de Adesão Celular Neuronais/fisiologia , Neurônios GABAérgicos/fisiologia , Hipocampo/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sinapses/fisiologia
10.
Nat Commun ; 11(1): 6118, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257658

RESUMO

Inhibitors of poly-ADP-ribose polymerase 1 (PARPi) are highly effective in killing cells deficient in homologous recombination (HR); thus, PARPi have been clinically utilized to successfully treat BRCA2-mutant tumors. However, positive response to PARPi is not universal, even among patients with HR-deficiency. Here, we present the results of genome-wide CRISPR knockout and activation screens which reveal genetic determinants of PARPi response in wildtype or BRCA2-knockout cells. Strikingly, we report that depletion of the ubiquitin ligase HUWE1, or the histone acetyltransferase KAT5, top hits from our screens, robustly reverses the PARPi sensitivity caused by BRCA2-deficiency. We identify distinct mechanisms of resistance, in which HUWE1 loss increases RAD51 levels to partially restore HR, whereas KAT5 depletion rewires double strand break repair by promoting 53BP1 binding to double-strand breaks. Our work provides a comprehensive set of putative biomarkers that advance understanding of PARPi response, and identifies novel pathways of PARPi resistance in BRCA2-deficient cells.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Inibidores de Poli(ADP-Ribose) Polimerases/isolamento & purificação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/efeitos dos fármacos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Biomarcadores , Dano ao DNA , Reparo do DNA , Técnicas de Inativação de Genes , Células HeLa , Recombinação Homóloga/efeitos dos fármacos , Humanos , Lisina Acetiltransferase 5/metabolismo , Proteínas Mad2/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...