Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(18): e37977, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39381220

RESUMO

The study of many diseases is limited by the in vitro systems available. Cystic Fibrosis-Related Diabetes (CFRD), the main co-morbidity of Cystic Fibrosis (CF), is a perfect example. Cells in vivo experience glucose fluctuations after meals. In contrast, cells cultured in vitro are initially exposed to high glucose media. Glucose gets progressively depleted until the next media change days later, which is not physiologically relevant and could negatively impact the results of research studies. To better study the mechanisms driving CFRD pathophysiology, we developed a programmable and automated cell culture system (PACCS) capable of mimicking acute hyperglycemic episodes experienced by CFRD patients after meals. We adapted a commercially available perfusion system and performed 3D modeling to develop this system. Results show that PACCS can be successfully used to culture airway epithelial cells, both immortalized and primary cells. Further, CF cells responded differently to meal-like conditioning when compared to controls, suggesting impaired adaptative responses in CF cells. Overall, PACCS will allow us to better study CFRD pathophysiology, and it could be used for a wide range of other applications.

2.
Learn Mem ; 28(4): 126-133, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33723032

RESUMO

Dysfunctions in memory recall lead to pathological fear; a hallmark of trauma-related disorders, like posttraumatic stress disorder (PTSD). Both, heightened recall of an association between a cue and trauma, as well as impoverished recall that a previously trauma-related cue is no longer a threat, result in a debilitating fear toward the cue. Glucocorticoid-mediated action via the glucocorticoid receptor (GR) influences memory recall. This literature has primarily focused on GRs expressed in neurons or ignored cell-type specific contributions. To ask how GR action in nonneuronal cells influences memory recall, we combined auditory fear conditioning in mice and the knockout of GRs in astrocytes in the prefrontal cortex (PFC), a brain region implicated in memory recall. We found that knocking out GRs in astrocytes of the PFC disrupted memory recall. Specifically, we found that knocking out GRs in astrocytes in the PFC (AstroGRKO) after fear conditioning resulted in higher levels of freezing to the CS+ tone when compared with controls (AstroGRintact). While we did not find any differences in extinction of fear toward the CS+ between these groups, AstroGRKO female but not male mice showed impaired recall of extinction training. These results suggest that GRs in cortical astrocytes contribute to memory recall. These data demonstrate the need to examine GR action in cortical astrocytes to elucidate the basic neurobiology underlying memory recall and potential mechanisms that underlie female-specific biases in the incidence of PTSD.


Assuntos
Astrócitos/metabolismo , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Rememoração Mental/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Percepção Auditiva/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores Sexuais
3.
Dev Cell ; 51(4): 421-430.e3, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31679858

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel central to the development of secretory diarrhea and cystic fibrosis. The oldest CFTR ortholog identified is from dogfish shark, which retains similar structural and functional characteristics to the mammalian protein, thereby highlighting CFTR's critical role in regulating epithelial ion transport in vertebrates. However, the identification of an early CFTR ortholog with altered structure or function would provide critical insight into the evolution of epithelial anion transport. Here, we describe the earliest known CFTR, expressed in sea lamprey (Petromyzon marinus), with unique structural features, altered kinetics of activation and sensitivity to inhibition, and altered single-channel conductance compared to human CFTR. Our data provide the earliest evolutionary evidence of CFTR, offering insight regarding changes in gene and protein structure that underpin evolution from transporter to anion channel. Importantly, these data provide a unique platform to enhance our understanding of vertebrate phylogeny over a critical period of evolutionary expansion.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/ultraestrutura , Evolução Molecular , Humanos , Lampreias
4.
Sci Rep ; 9(1): 13460, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530897

RESUMO

VX-770 (ivacaftor) is approved for clinical use in CF patients bearing multiple CFTR mutations. VX-770 potentiated wildtype CFTR and several disease mutants expressed in oocytes in a manner modulated by PKA-mediated phosphorylation. Potentiation of some other mutants, including G551D-CFTR, was less dependent upon the level of phosphorylation, likely related to the severe gating defects in these mutants exhibited in part by a shift in PKA sensitivity to activation, possibly due to an electrostatic interaction of D551 with K1250. Phosphorylation-dependent potentiation of wildtype CFTR and other variants also was observed in epithelial cells. Hence, the efficacy of potentiators may be obscured by a ceiling effect when drug screening is performed under strongly phosphorylating conditions. These results should be considered in campaigns for CFTR potentiator discovery, and may enable the expansion of VX-770 to CF patients bearing ultra-orphan CFTR mutations.


Assuntos
Aminofenóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Quinolonas/farmacologia , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/química , Feminino , Humanos , Mutação , Oócitos , Fosforilação/efeitos dos fármacos , Ratos , Xenopus laevis
6.
Sci Rep ; 7(1): 13475, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044184

RESUMO

Fishes rely on both chemical and tactile senses to orient themselves to avoid predators, and to detect and taste food. This is likely achieved by highly coordinated reception of signals by mechano- and chemosensory receptors in fish. A small co-receptor from zebrafish, receptor activity modifying protein (RAMP)-like triterpene glycoside receptor (RL-TGR), was previously found to be involved in recognition of triterpene glycosides, a family of naturally occurring compounds that act as chemical defenses in various prey species. However, its localization, function, and how it impacts sensory organ development in vivo is not known. Here we show that RL-TGR is expressed in zebrafish in both i) apical microvilli of the chemosensory cells of taste buds including the epithelium of lips and olfactory epithelium, and ii) mechanosensory cells of neuromasts belonging to the lateral line system. Loss-of-function analyses of RL-TGR resulted in significantly decreased number of neuromasts in the posterior lateral line system and decreased body length, suggesting that RL-TGR is involved in deposition and migration of the neuromasts. Collectively, these results provide the first in vivo genetic evidence of sensory cell-specific expression of this unusual co-receptor and reveal its additional role in the lateral line development in zebrafish.


Assuntos
Células Quimiorreceptoras/metabolismo , Expressão Gênica , Sistema da Linha Lateral/metabolismo , Mecanorreceptores/metabolismo , Papilas Gustativas/metabolismo , Peixe-Zebra/fisiologia , Animais , Biomarcadores , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Sistema da Linha Lateral/embriologia , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L688-L702, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213469

RESUMO

Cystic fibrosis-related diabetes is the most common comorbidity associated with cystic fibrosis (CF) and correlates with increased rates of lung function decline. Because glucose is a nutrient present in the airways of patients with bacterial airway infections and because insulin controls glucose metabolism, the effect of insulin on CF airway epithelia was investigated to determine the role of insulin receptors and glucose transport in regulating glucose availability in the airway. The response to insulin by human airway epithelial cells was characterized by quantitative PCR, immunoblot, immunofluorescence, and glucose uptake assays. Phosphatidylinositol 3-kinase/protein kinase B (Akt) signaling and cystic fibrosis transmembrane conductance regulator (CFTR) activity were analyzed by pharmacological and immunoblot assays. We found that normal human primary airway epithelial cells expressed glucose transporter 4 and that application of insulin stimulated cytochalasin B-inhibitable glucose uptake, consistent with a requirement for glucose transporter translocation. Application of insulin to normal primary human airway epithelial cells promoted airway barrier function as demonstrated by increased transepithelial electrical resistance and decreased paracellular flux of small molecules. This provides the first demonstration that airway cells express insulin-regulated glucose transporters that act in concert with tight junctions to form an airway glucose barrier. However, insulin failed to increase glucose uptake or decrease paracellular flux of small molecules in human airway epithelia expressing F508del-CFTR. Insulin stimulation of Akt1 and Akt2 signaling in CF airway cells was diminished compared with that observed in airway cells expressing wild-type CFTR. These results indicate that the airway glucose barrier is regulated by insulin and is dysfunctional in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Insulina/metabolismo , Pulmão/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Líquido da Lavagem Broncoalveolar , Linhagem Celular Transformada , Polaridade Celular , Ativação Enzimática , Células Epiteliais/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Camundongos , Modelos Biológicos , Receptor de Insulina/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L192-207, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288484

RESUMO

VX-770 (Ivacaftor) has been approved for clinical usage in cystic fibrosis patients with several CFTR mutations. Yet the binding site(s) on CFTR for this compound and other small molecule potentiators are unknown. We hypothesize that insight into this question could be gained by comparing the effect of potentiators on CFTR channels from different origins, e.g., human, mouse, and Xenopus (frog). In the present study, we combined this comparative molecular pharmacology approach with that of computer-aided drug discovery to identify and characterize new potentiators of CFTR and to explore possible mechanism of action. Our results demonstrate that 1) VX-770, NPPB, GlyH-101, P1, P2, and P3 all exhibited ortholog-specific behavior in that they potentiated hCFTR, mCFTR, and xCFTR with different efficacies; 2) P1, P2, and P3 potentiated hCFTR in excised macropatches in a manner dependent on the degree of PKA-mediated stimulation; 3) P1 and P2 did not have additive effects, suggesting that these compounds might share binding sites. Also 4) using a pharmacophore modeling approach, we identified three new potentiators (IOWH-032, OSSK-2, and OSSK-3) that have structures similar to GlyH-101 and that also exhibit ortholog-specific potentiation of CFTR. These could potentially serve as lead compounds for development of new drugs for the treatment of cystic fibrosis. The ortholog-specific behavior of these compounds suggest that a comparative pharmacology approach, using cross-ortholog chimeras, may be useful for identification of binding sites on human CFTR.


Assuntos
Agonistas dos Canais de Cloreto/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Sequência de Aminoácidos , Aminofenóis/farmacologia , Animais , Células Cultivadas , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Avaliação Pré-Clínica de Medicamentos , Glicina/análogos & derivados , Glicina/farmacologia , Hidrazinas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Nitrobenzoatos/farmacologia , Técnicas de Patch-Clamp , Quinolonas/farmacologia , Deleção de Sequência , Xenopus laevis
9.
Free Radic Biol Med ; 65: 89-101, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23770340

RESUMO

Embryonic development involves dramatic changes in cell proliferation and differentiation that must be highly coordinated and tightly regulated. Cellular redox balance is critical for cell fate decisions, but it is susceptible to disruption by endogenous and exogenous sources of oxidative stress. The most abundant endogenous nonprotein antioxidant defense molecule is the tripeptide glutathione (γ-glutamylcysteinylglycine, GSH), but the ontogeny of GSH concentration and redox state during early life stages is poorly understood. Here, we describe the GSH redox dynamics during embryonic and early larval development (0-5 days postfertilization) in the zebrafish (Danio rerio), a model vertebrate embryo. We measured reduced and oxidized glutathione using HPLC and calculated the whole embryo total glutathione (GSHT) concentrations and redox potentials (Eh) over 0-120 h of zebrafish development (including mature oocytes, fertilization, midblastula transition, gastrulation, somitogenesis, pharyngula, prehatch embryos, and hatched eleutheroembryos). GSHT concentration doubled between 12h postfertilization (hpf) and hatching. The GSH Eh increased, becoming more oxidizing during the first 12h, and then oscillated around -190 mV through organogenesis, followed by a rapid change, associated with hatching, to a more negative (more reducing) Eh (-220 mV). After hatching, Eh stabilized and remained steady through 120 hpf. The dynamic changes in GSH redox status and concentration defined discrete windows of development: primary organogenesis, organ differentiation, and larval growth. We identified the set of zebrafish genes involved in the synthesis, utilization, and recycling of GSH, including several novel paralogs, and measured how expression of these genes changes during development. Ontogenic changes in the expression of GSH-related genes support the hypothesis that GSH redox state is tightly regulated early in development. This study provides a foundation for understanding the redox regulation of developmental signaling and investigating the effects of oxidative stress during embryogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Glutationa/genética , Glutationa/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Peixe-Zebra/genética
10.
Cell Mol Biol Lett ; 16(1): 149-61, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21225471

RESUMO

Development is an orderly process that requires the timely activation and/or deactivation of specific regulatory elements that control cellular proliferation, differentiation and apoptosis. While many studies have defined factors that control developmental signaling, the role of intracellular reduction/oxidation (redox) status as a means to control differentiation has not been fully studied. Redox states of intracellular couples may play a very important role in regulating redox-sensitive elements that are involved in differentiation signaling into specific phenotypes. In human mesenchymal stem cells (hMSCs), which are capable of differentiating into many different types of phenotypes, including osteoblasts and adipocytes, glutathione (GSH), cysteine (Cys) and thioredoxin-1 (Trx1) redox potentials were measured during adipogenesis and osteogenesis. GSH redox potentials (E(h)) during both osteogenesis and adipogenesis became increasingly oxidized as differentiation ensued, but the rate at which this oxidation occurred was unique for each process. During adipogenesis, Cys E(h) became oxidized as adipogenesis progressed but during osteogenesis, it became reduced. Interestingly, intracellular Trx1 concentrations appeared to increase in both adipogenesis and osteogenesis, but the E(h) was unchanged when compared to undifferentiated hMSCs. These data show that hMSC differentiation into either adipocytes of osteoblasts corresponds to a unique redox state profile, suggesting that differentiation into specific phenotypes are likely regulated by redox states that are permissive to a specific developmental process.


Assuntos
Adipócitos/citologia , Adipogenia , Osteoblastos/citologia , Osteogênese , Adipócitos/metabolismo , Apoptose , Diferenciação Celular , Proliferação de Células , Cisteína/metabolismo , Glutationa/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Oxirredução , Fenótipo , Tiorredoxinas/metabolismo
11.
Differentiation ; 80(1): 31-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20471742

RESUMO

Oxidized extracellular redox states have been associated with many diseases related to obesity, including heart disease and diabetes, but relatively little is known about the relationship between extracellular redox states and obesity. In 3T3-L1 preadipocytes, oxidizing extracellular redox potentials (E(h)) increased intracellular and mitochondrial reactive oxygen species (ROS) production. 3T3-L1 adipocytes showed a greater response to extracellular E(h), producing more intracellular ROS, than preadipocytes. 3T3-L1 adipocytes also produced more extracellular ROS and re-regulated the extracellular E(h) to a more oxidizing state than preadipocytes. During 3T3-L1 differentiation, cellular glutathione and mitochondrial thioredoxin-2 become oxidized, suggesting that adipogenesis may be enhanced under conditions promoting intracellular and mitochondrial compartment oxidation. Under various extracellular E(h), 3T3-L1 adipogenesis, as determined by lipid accumulation and the expression of early genetic markers of adipogenesis, was sensitive to the extracellular redox environment, where it was enhanced under oxidizing conditions and lower under reducing conditions. Using a diet-induced obesity mouse model, plasma was collected before and after the 8 week diet regimens. Plasma GSH E(h) was unchanged as a consequence of weight gain but plasma cystiene (Cys) E(h) was significantly oxidized in overweight animals. Data presented here show that adipocytes/excessive adipose preferentially alter extracellular E(h) to a more oxidized state in vivo and in vitro and may promote further adipogenesis.


Assuntos
Adipócitos/citologia , Adipogenia/fisiologia , Diferenciação Celular , Espaço Extracelular/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Dieta , Glutationa/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
12.
Cell Biol Toxicol ; 26(6): 541-51, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20429028

RESUMO

Tert-butylhydroquinone (tBHQ), the major metabolite of butylated hydroxyanisole, induces an antioxidant response through the redox-sensitive transcription factor, nuclear factor-E2-related factor-2 (Nrf2). However, the mechanism by which tBHQ induces Nrf2 activity is not entirely understood. Here, we show that tBHQ preferentially alters the redox status in the mitochondrial compartment in HeLa cells. HeLa cells treated with tBHQ showed a preferential oxidation of mitochondrial thioredoxin-2 (Trx2), while cellular glutathione and cytosolic thioredoxin-1 were not affected. Preferential mitochondrial oxidation by tBHQ was supported by detection of reactive oxygen species (ROS) specific to this compartment. To determine the role of Trx2 in regulating downstream effects of tBHQ, HeLa cells were transiently transfected with an empty, Trx2, or C93S (Cys93Ser) Trx2 dominant-negative mutant expression vector. Overexpression of Trx2 decreased basal mitochondrial ROS production, whereas expression of C93S Trx2 enhanced it. In addition, under untreated conditions, expression of C93S Trx2 led to an increase in the basal activities of Nrf2. With tBHQ treatments, Trx2 overexpression suppressed Nrf2 accumulation and activity, whereas expression of C93S Trx2 had no effect on the degree of inducibility or Nrf2 accumulation but did increase the overall activity of Nrf2. Quantitative polymerase chain reaction analysis of Nrf2-regulated gene expression corroborate Trx2 control of tBHQ-mediated Nrf2 activation. These data show a compartment-specific effect where tBHQ-induced Nrf2 signaling is mediated by Trx2 and suggest that antioxidant status in various compartments would provide different levels of control of redox signaling.


Assuntos
Hidroquinonas/toxicidade , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo
13.
Biochem J ; 424(3): 491-500, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19778293

RESUMO

The redox status of the extracellular compartment has only just been elucidated as a mechanism controlling intracellular signal transduction and correlates with aging, diabetes, heart disease and lung fibrosis. In the present paper, we describe a mechanism by which oxidizing extracellular environments, as maintained by the cysteine/cystine (Cys/CySS) redox couple, induce mitochondria-derived ROS (reactive oxygen species) generation and cause the activation of Nrf2 (nuclear factor-erythroid 2-related factor 2), inducing an antioxidant response. NIH 3T3 cells were cultured in medium with extracellular Cys/CySS redox potentials (Eh), ranging from 0 to -150 mV. Cellular and mitochondrial ROS production significantly increased in cells incubated under more oxidizing extracellular conditions (0 and -46 mV). Trx2 (thioredoxin-2) is a mitochondrial-specific oxidoreductase and antioxidant and became oxidized in cells incubated at 0 or -46 mV. MEFs (mouse embryonic fibroblasts) from Trx2-overexpressing transgenic (Trx2 Tg) mice produced less intracellular ROS compared with WT (wild-type) MEFs at the more oxidizing extracellular conditions. Nrf2 activity was increased in WT MEFs at the 0 or -46 mV conditions, but was inhibited in Trx2 Tg MEFs under the same conditions. Furthermore, Nrf2-regulated gene expression was significantly increased in the WT MEFs, but not in the Trx2 Tg MEFs. These results show that the Cys/CySS redox status in the extracellular compartment regulates intracellular ROS generated primarily in the mitochondria, which play an important role in the activation of Nrf2 and up-regulation of antioxidant and detoxification systems.


Assuntos
Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Western Blotting , Bromodesoxiuridina/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Cisteína/metabolismo , Cistina/metabolismo , Embrião de Mamíferos/citologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Isotiocianatos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Células NIH 3T3 , Oxirredução , Transporte Proteico , Sulfóxidos , Tiocianatos/farmacologia , Tiorredoxinas/genética
15.
Nucleic Acids Res ; 35(19): 6672-80, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17916578

RESUMO

HU is one of the most abundant DNA binding proteins in Escherichia coli. We find that it binds strongly to DNA containing an abasic (AP) site or tetrahydrofuran (THF) (apparent K(d) approximately 50 nM). It also possesses an AP lyase activity that cleaves at a deoxyribose but not at a THF residue. The binding and cleavage of an AP site was observed only with the HUalphabeta heterodimer. Site-specific mutations at K3 and R61 residues led to a change in substrate binding and cleavage. Both K3A(alpha)K3A(beta) and R61A(alpha)R61A(beta) mutant HU showed significant reduction in binding to DNA containing AP site; however, only R61A(alpha)R61A(beta) mutant protein exhibited significant loss in AP lyase activity. Both K3A(alpha)K3A(beta) and R61K(alpha)R61K(beta) showed slight reduction in AP lyase activities. The function of HU protein as an AP lyase was confirmed by the ability of hupA or hupB mutations to further reduce the viability of an E. coli dut(Ts) xth mutant, which generates lethal AP sites at 37 degrees C; the hupA and hupB derivatives, respectively, had a 6-fold and a 150-fold lower survival at 37 degrees C than did the parental strain. These data suggest, therefore, that HU protein plays a significant role in the repair of AP sites in E. coli.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease IV (Fago T4-Induzido)/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Temperatura
16.
J Biol Chem ; 278(31): 28501-7, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12748168

RESUMO

Closely opposed lesions form a unique class of DNA damage that is generated by ionizing radiation. Improper repair of closely opposed lesions could lead to the formation of double strand breaks that can result in increased lethality and mutagenesis. In vitro processing of closely opposed lesions was studied using double-stranded DNA containing a nick in close proximity opposite to a dihydrouracil. In this study we showed that HU protein, an Escherichia coli DNA-binding protein, has a role in the repair of closely opposed lesions. The repair of dihydrouracil is initiated by E. coli endonuclease III and processed via the base excision repair pathway. HU protein was shown to inhibit the rate of removal of dihydrouracil by endonuclease III only when the DNA substrate contained a nick in close proximity opposite to the dihydrouracil. In contrast, HU protein did not inhibit the subsequent steps of the base excision repair pathway, namely the DNA synthesis and ligation reactions catalyzed by E. coli DNA polymerase and E. coli DNA ligase, respectively. The nick-dependent selective inhibition of endonuclease III activity by HU protein suggests that HU could play a role in reducing the formation of double strand breaks in E. coli.


Assuntos
Proteínas de Bactérias/fisiologia , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Escherichia coli/química , Uracila/análogos & derivados , Proteínas de Bactérias/farmacologia , DNA/biossíntese , DNA/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , DNA Polimerase I/metabolismo , Proteínas de Ligação a DNA/farmacologia , Exodesoxirribonucleases/metabolismo , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , Uracila/metabolismo , Proteínas de Xenopus
17.
J Biol Chem ; 277(34): 30417-20, 2002 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-12097317

RESUMO

Two candidate human orthologs of Escherichia coli MutM/Nei were recently identified in the human genome database, and one of these, NEH1, was characterized earlier (Hazra, T. K., Izumi, T., Boldogh, I., Imhoff, B., Kow, Y. W., Jaruga, P., and Dizdaroglu, M. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 3523-3528). Here we report characterization of the second protein, originally named NEH2 and now renamed NEIL2 (Nei-like). The 37-kDa wild-type NEIL2 expressed in and purified from E. coli has DNA glycosylase/AP lyase activity, primarily for excising oxidative products of cytosine, with highest activity for 5-hydroxyuracil, one of the most abundant and mutagenic lesions induced by reactive oxygen species, and with lower activity for 5,6-dihydrouracil and 5-hydroxycytosine. It has negligible or undetectable activity with 8-oxoguanine, thymine glycol, 2-hydroxyadenine, hypoxanthine, and xanthine. NEIL2 is similar to NEIL1 in having N-terminal Pro as the active site. However, unlike NEIL1, its expression was independent of the cell cycle stage in fibroblasts, and its highest expression was observed in the testes and skeletal muscle. Despite the absence of a putative nuclear localization signal, NEIL2 was predominantly localized in the nucleus. These results suggest that NEIL2 is involved in global genome repair mainly for removing oxidative products of cytosine.


Assuntos
Citosina/metabolismo , Reparo do DNA , N-Glicosil Hidrolases/fisiologia , Uracila/análogos & derivados , Ciclo Celular , Núcleo Celular/enzimologia , DNA Glicosilases , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Humanos , N-Glicosil Hidrolases/análise , N-Glicosil Hidrolases/isolamento & purificação , Especificidade de Órgãos , Proteínas Recombinantes/isolamento & purificação , Uracila/metabolismo
18.
Proc Natl Acad Sci U S A ; 99(6): 3523-8, 2002 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11904416

RESUMO

8-oxoguanine (8-oxoG), ring-opened purines (formamidopyrimidines or Fapys), and other oxidized DNA base lesions generated by reactive oxygen species are often mutagenic and toxic, and have been implicated in the etiology of many diseases, including cancer, and in aging. Repair of these lesions in all organisms occurs primarily via the DNA base excision repair pathway, initiated with their excision by DNA glycosylase/AP lyases, which are of two classes. One class utilizes an internal Lys residue as the active site nucleophile, and includes Escherichia coli Nth and both known mammalian DNA glycosylase/AP lyases, namely, OGG1 and NTH1. E. coli MutM and its paralog Nei, which comprise the second class, use N-terminal Pro as the active site. Here, we report the presence of two human orthologs of E. coli mutM nei genes in the human genome database, and characterize one of their products. Based on the substrate preference, we have named it NEH1 (Nei homolog). The 44-kDa, wild-type recombinant NEH1, purified to homogeneity from E. coli, excises Fapys from damaged DNA, and oxidized pyrimidines and 8-oxoG from oligodeoxynucleotides. Inactivation of the enzyme because of either deletion of N-terminal Pro or Histag fusion at the N terminus supports the role of N-terminal Pro as its active site. The tissue-specific levels of NEH1 and OGG1 mRNAs are distinct, and S phase-specific increase in NEH1 at both RNA and protein levels suggests that NEH1 is involved in replication-associated repair of oxidized bases.


Assuntos
Dano ao DNA/genética , Reparo do DNA , DNA/metabolismo , Proteínas de Escherichia coli , N-Glicosil Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Clonagem Molecular , DNA/química , DNA/genética , DNA/efeitos da radiação , Dano ao DNA/efeitos da radiação , DNA Glicosilases , DNA-Formamidopirimidina Glicosilase , Bases de Dados de Ácidos Nucleicos , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Perfilação da Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Peso Molecular , Mutação , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/isolamento & purificação , Mapeamento Físico do Cromossomo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fase S , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...