Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Thorax ; 79(8): 778-787, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38508718

RESUMO

INTRODUCTION: Novel therapeutic strategies are urgently needed for Mycobacterium avium complex pulmonary disease (MAC-PD). Human mesenchymal stromal cells (MSCs) can directly inhibit MAC growth, but their effect on intracellular bacilli is unknown. We investigated the ability of human MSCs to reduce bacterial replication and inflammation in MAC-infected macrophages and in a murine model of MAC-PD. METHODS: Human monocyte-derived macrophages (MDMs) were infected with M. avium Chester strain and treated with human bone marrow-derived MSCs. Intracellular and extracellular colony-forming units (CFUs) were counted at 72 hours. Six-week-old female balb/c mice were infected by nebulisation of M. avium Chester. Mice were treated with 1×106 intravenous human MSCs or saline control at 21 and 28 days post-infection. Lungs, liver and spleen were harvested 42 days post-infection for bacterial counts. Cytokines were quantified by ELISA. RESULTS: MSCs reduced intracellular bacteria in MDMs over 72 hours (median 35% reduction, p=0.027). MSC treatment increased extracellular concentrations of prostaglandin E2 (PGE2) (median 10.1-fold rise, p=0.002) and reduced tumour necrosis factor-α (median 28% reduction, p=0.025). Blocking MSC PGE2 production by cyclo-oxygenase-2 (COX-2) inhibition with celecoxib abrogated the antimicrobial effect, while this was restored by adding exogenous PGE2. MSC-treated mice had lower pulmonary CFUs (median 18% reduction, p=0.012), but no significant change in spleen or liver CFUs compared with controls. CONCLUSION: MSCs can modulate inflammation and reduce intracellular M. avium growth in human macrophages via COX-2/PGE2 signalling and inhibit pulmonary bacterial replication in a murine model of chronic MAC-PD.


Assuntos
Modelos Animais de Doenças , Células-Tronco Mesenquimais , Camundongos Endogâmicos BALB C , Infecção por Mycobacterium avium-intracellulare , Animais , Camundongos , Feminino , Humanos , Infecção por Mycobacterium avium-intracellulare/microbiologia , Complexo Mycobacterium avium , Transplante de Células-Tronco Mesenquimais/métodos , Macrófagos/microbiologia , Dinoprostona/metabolismo , Sulfonamidas/farmacologia , Mycobacterium avium
2.
Nat Commun ; 15(1): 1870, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467607

RESUMO

Myelin regeneration (remyelination) is essential to prevent neurodegeneration in demyelinating diseases such as Multiple Sclerosis, however, its efficiency declines with age. Regulatory T cells (Treg) recently emerged as critical players in tissue regeneration, including remyelination. However, the effect of ageing on Treg-mediated regenerative processes is poorly understood. Here, we show that expansion of aged Treg does not rescue age-associated remyelination impairment due to an intrinsically diminished capacity of aged Treg to promote oligodendrocyte differentiation and myelination in male and female mice. This decline in regenerative Treg functions can be rescued by a young environment. We identified Melanoma Cell Adhesion Molecule 1 (MCAM1) and Integrin alpha 2 (ITGA2) as candidates of Treg-mediated oligodendrocyte differentiation that decrease with age. Our findings demonstrate that ageing limits the neuroregenerative capacity of Treg, likely limiting their remyelinating therapeutic potential in aged patients, and describe two mechanisms implicated in Treg-driven remyelination that may be targetable to overcome this limitation.


Assuntos
Remielinização , Humanos , Masculino , Feminino , Camundongos , Animais , Idoso , Remielinização/fisiologia , Linfócitos T Reguladores/metabolismo , Oligodendroglia/fisiologia , Diferenciação Celular/fisiologia , Bainha de Mielina/metabolismo , Envelhecimento , Sistema Nervoso Central
3.
Pathogens ; 12(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37624013

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen and the leading cause of infection in patients with cystic fibrosis (CF). The ability of P. aeruginosa to evade host responses and develop into chronic infection causes significant morbidity and mortality. Several mouse models have been developed to study chronic respiratory infections induced by P. aeruginosa, with the bead agar model being the most widely used. However, this model has several limitations, including the requirement for surgical procedures and high mortality rates. Herein, we describe novel and adapted biologically relevant models of chronic lung infection caused by P. aeruginosa. Three methods are described: a clinical isolate infection model, utilising isolates obtained from patients with CF; an incomplete antibiotic clearance model, leading to bacterial bounce-back; and the establishment of chronic infection; and an adapted water bottle chronic infection model. These models circumvent the requirement for a surgical procedure and, importantly, can be induced with clinical isolates of P. aeruginosa and in wild-type mice. We also demonstrate successful induction of chronic infection in the transgenic ßENaC murine model of CF. We envisage that the models described will facilitate the investigations of host and microbial factors, and the efficacy of novel antimicrobials, during chronic P. aeruginosa respiratory infections.

4.
Cell Rep ; 42(8): 113012, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37598340

RESUMO

How the opportunistic Gram-negative pathogens of the genus Achromobacter interact with the innate immune system is poorly understood. Using three Achromobacter clinical isolates from two species, we show that the type 3 secretion system (T3SS) is required to induce cell death in human macrophages by inflammasome-dependent pyroptosis. Macrophages deficient in the inflammasome sensors NLRC4 or NLRP3 undergo pyroptosis upon bacterial internalization, but those deficient in both NLRC4 and NLRP3 do not, suggesting either sensor mediates pyroptosis in a T3SS-dependent manner. Detailed analysis of the intracellular trafficking of one isolate indicates that the intracellular bacteria reside in a late phagolysosome. Using an intranasal mouse infection model, we observe that Achromobacter damages lung structure and causes severe illness, contingent on a functional T3SS. Together, we demonstrate that Achromobacter species can survive phagocytosis by promoting macrophage cell death and inflammation by redundant mechanisms of pyroptosis induction in a T3SS-dependent manner.


Assuntos
Achromobacter , Piroptose , Humanos , Animais , Camundongos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sistemas de Secreção Tipo III , Modelos Animais de Doenças , Proteínas de Ligação ao Cálcio , Proteínas Adaptadoras de Sinalização CARD
5.
Biomolecules ; 12(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36551159

RESUMO

Secretory leucoprotease inhibitor (SLPI) has multifaceted functions, including inhibition of protease activity, antimicrobial functions, and anti-inflammatory properties. In this study, we show that SLPI plays a role in controlling pulmonary Pseudomonas aeruginosa infection. Mice lacking SLPI were highly susceptible to P. aeruginosa infection, however there was no difference in bacterial burden. Utilising a model of P. aeruginosa LPS-induced lung inflammation, human recombinant SLPI (hrSLPI) administered intraperitoneally suppressed the recruitment of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and resulted in reduced BALF and serum levels of inflammatory cytokines and chemokines. This anti-inflammatory effect of hrSLPI was similarly demonstrated in a systemic inflammation model induced by intraperitoneal injection of LPS from various bacteria or lipoteichoic acid, highlighting the broad anti-inflammatory properties of hrSLPI. Moreover, in bone-marrow-derived macrophages, hrSLPI reduced LPS-induced phosphorylation of p-IkB-α, p-IKK-α/ß, p-P38, demonstrating that the anti-inflammatory effect of hrSLPI was due to the inhibition of the NFκB and MAPK pathways. In conclusion, administration of hrSLPI attenuates excessive inflammatory responses and is therefore, a promising strategy to target inflammatory diseases such as acute respiratory distress syndrome or sepsis and could potentially be used to augment antibiotic treatment.


Assuntos
Inflamação , Infecções por Pseudomonas , Inibidor Secretado de Peptidases Leucocitárias , Animais , Humanos , Camundongos , Inflamação/metabolismo , Inflamação/microbiologia , Lipopolissacarídeos , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/terapia , Inibidor Secretado de Peptidases Leucocitárias/administração & dosagem , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Proteínas Recombinantes/administração & dosagem
6.
Vaccines (Basel) ; 10(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298436

RESUMO

The causative agent of anthrax, Bacillus anthracis, evades the host immune response and establishes infection through the production of binary exotoxins composed of Protective Antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). The majority of vaccination strategies have focused upon the antibody response to the PA subunit. We have used a panel of humanised HLA class II transgenic mouse strains to define HLA-DR-restricted and HLA-DQ-restricted CD4+ T cell responses to the immunodominant epitopes of PA. This was correlated with the binding affinities of epitopes to HLA class II molecules, as well as the responses of two human cohorts: individuals vaccinated with the Anthrax Vaccine Precipitated (AVP) vaccine (which contains PA and trace amounts of LF), and patients recovering from cutaneous anthrax infections. The infected and vaccinated cohorts expressing different HLA types were found to make CD4+ T cell responses to multiple and diverse epitopes of PA. The effects of HLA polymorphism were explored using transgenic mouse lines, which demonstrated differential susceptibility, indicating that HLA-DR1 and HLA-DQ8 alleles conferred protective immunity relative to HLA-DR15, HLA-DR4 and HLA-DQ6. The HLA transgenics enabled a reductionist approach, allowing us to better define CD4+ T cell epitopes. Appreciating the effects of HLA polymorphism on the variability of responses to natural infection and vaccination is vital in planning protective strategies against anthrax.

7.
Cell Rep ; 40(6): 111167, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947948

RESUMO

Many bacterial pathogens antagonize host defense responses by translocating effector proteins into cells. It remains an open question how those pathogens not encoding effectors counteract anti-bacterial immunity. Here, we show that Klebsiella pneumoniae exploits the evolutionary conserved innate protein SARM1 to regulate negatively MyD88- and TRIF-governed inflammation, and the activation of the MAP kinases ERK and JNK. SARM1 is required for Klebsiella induction of interleukin-10 (IL-10) by fine-tuning the p38-type I interferon (IFN) axis. SARM1 inhibits the activation of Klebsiella-induced absent in melanoma 2 inflammasome to limit IL-1ß production, suppressing further inflammation. Klebsiella exploits type I IFNs to induce SARM1 in a capsule and lipopolysaccharide O-polysaccharide-dependent manner via the TLR4-TRAM-TRIF-IRF3-IFNAR1 pathway. Absence of SARM1 reduces the intracellular survival of K. pneumoniae in macrophages, whereas sarm1-deficient mice control the infection. Altogether, our results illustrate an anti-immunology strategy deployed by a human pathogen. SARM1 inhibition will show a beneficial effect to treat Klebsiella infections.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Proteínas Adaptadoras de Transporte Vesicular , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Citoesqueleto , Humanos , Inflamação , Camundongos , Transdução de Sinais
8.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34032637

RESUMO

Evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) is a protein with roles in early development, activation of the transcription factor NF-κB, and production of mitochondrial reactive oxygen species (mROS) that facilitates clearance of intracellular bacteria like Salmonella. ECSIT is also an important assembly factor for mitochondrial complex I. Unlike the murine form of Ecsit (mEcsit), we demonstrate here that human ECSIT (hECSIT) is highly labile. To explore whether the instability of hECSIT affects functions previously ascribed to its murine counterpart, we created a potentially novel transgenic mouse in which the murine Ecsit gene is replaced by the human ECSIT gene. The humanized mouse has low levels of hECSIT protein, in keeping with its intrinsic instability. Whereas low-level expression of hECSIT was capable of fully compensating for mEcsit in its roles in early development and activation of the NF-κB pathway, macrophages from humanized mice showed impaired clearance of Salmonella that was associated with reduced production of mROS. Notably, severe cardiac hypertrophy was manifested in aging humanized mice, leading to premature death. The cellular and molecular basis of this phenotype was delineated by showing that low levels of human ECSIT protein led to a marked reduction in assembly and activity of mitochondrial complex I with impaired oxidative phosphorylation and reduced production of ATP. Cardiac tissue from humanized hECSIT mice also showed reduced mitochondrial fusion and more fission but impaired clearance of fragmented mitochondria. A cardiomyocyte-intrinsic role for Ecsit in mitochondrial function and cardioprotection is also demonstrated. We also show that cardiac fibrosis and damage in humans correlated with low expression of human ECSIT. In summary, our findings identify a role for ECSIT in cardioprotection, while generating a valuable experimental model to study mitochondrial dysfunction and cardiac pathophysiology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Cardiomegalia , Miocárdio , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Humanos , Macrófagos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , NF-kappa B/genética , NF-kappa B/metabolismo
9.
ACS Infect Dis ; 7(5): 1283-1296, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33843198

RESUMO

The contribution of the gut microbiome to human health has long been established, with normal gut microbiota conferring protection against invasive pathogens. Antibiotics can disrupt the microbial balance of the gut, resulting in disease and the development of antimicrobial resistance. The effect of antibiotic administration route on gut dysbiosis remains under-studied to date, with conflicting evidence on the differential effects of oral and parenteral delivery. We have profiled the rat gut microbiome following treatment with commonly prescribed antibiotics (amoxicillin and levofloxacin), via either oral or intravenous administration. Fecal pellets were collected over a 13-day period and bacterial populations were analyzed by 16S rRNA gene sequencing. Significant dysbiosis was observed in all treatment groups, regardless of administration route. More profound dysbiotic effects were observed following amoxicillin treatment than those with levofloxacin, with population richness and diversity significantly reduced, regardless of delivery route. The effect on specific taxonomic groups was assessed, revealing significant disruption following treatment with both antibiotics. Enrichment of a number of groups containing known gut pathogens was observed, in particular, with amoxicillin, such as the family Enterobacteriaceae. Depletion of other commensal groups was also observed. The degree of dysbiosis was significantly reduced toward the end of the sampling period, as bacterial populations began to return to pretreatment composition. Richness and diversity levels appeared to return to pretreatment levels more quickly in intravenous groups, suggesting convenient parenteral delivery systems may have a role to play in reducing longer term gut dysbiosis in the treatment of infection.


Assuntos
Microbioma Gastrointestinal , Animais , Antibacterianos , Disbiose/induzido quimicamente , Enterobacteriaceae , RNA Ribossômico 16S/genética , Ratos
10.
Mediators Inflamm ; 2021: 6682657, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828414

RESUMO

BACKGROUND: Elevated levels of the cysteine protease cathepsin S (CatS) are associated with chronic mucoobstructive lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). We have previously demonstrated that prophylactic treatment with a CatS inhibitor from birth reduces inflammation, mucus plugging, and lung tissue damage in juvenile ß-epithelial Na+ channel-overexpressing transgenic (ßENaC-Tg) mice with chronic inflammatory mucoobstructive lung disease. In this study, we build upon this work to examine the effects of therapeutic intervention with a CatS inhibitor in adult ßENaC-Tg mice with established disease. METHODS: ßENaC-Tg mice and wild-type (WT) littermates were treated with a CatS inhibitor from 4 to 6 weeks of age, and CatS-/- ßENaC-Tg mice were analysed at 6 weeks of age. Bronchoalveolar lavage (BAL) fluid inflammatory cell counts were quantified, and lung tissue destruction and mucus obstruction were analysed histologically. RESULTS: At 6 weeks of age, ßENaC-Tg mice developed significant airway inflammation, lung tissue damage, and mucus plugging when compared to WT mice. CatS-/- ßENaC-Tg mice and ßENaC-Tg mice receiving inhibitor had significantly reduced airway mononuclear and polymorphonuclear (PMN) cell counts as well as mucus plugging. However, in contrast to CatS-/- ßENaC-Tg mice, therapeutic inhibition of CatS in ßENaC-Tg mice had no effect on established emphysema-like lung tissue damage. CONCLUSIONS: These results suggest that while early CatS targeting may be required to prevent the onset and progression of lung tissue damage, therapeutic CatS targeting effectively inhibited airway inflammation and mucus obstruction. These results indicate the important role CatS may play in the pathogenesis and progression of mucoobstructive lung disease.


Assuntos
Catepsinas/antagonistas & inibidores , Fibrose Cística , Canais Epiteliais de Sódio , Animais , Fibrose Cística/patologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Muco
11.
J Leukoc Biol ; 109(3): 573-582, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678926

RESUMO

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) affect the homeostasis of chloride flux by epithelial cells. This has deleterious consequences, especially in respiratory epithelia, where the defect results in mucus accumulation distinctive of cystic fibrosis. CFTR is, however, also expressed in phagocytic cells, like macrophages. Immune cells are highly sensitive to conditioning by their environment; thus, CFTR dysfunction in epithelia influences macrophages by affecting the lung milieu, but the mutations also appear to be directly consequential for intrinsic macrophage functions. Particular mutations can alter CFTR's folding, traffic of the protein to the membrane and function. As such, understanding the intrinsic effects of CFTR mutation requires distinguishing the secondary effects of misfolded CFTR on cell stress pathways from the primary defect of CFTR dysfunction/absence. Investigations into CFTR's role in macrophages have exploited various models, each with their own advantages and limitations. This review summarizes these methodologic approaches, discussing their physiological correspondence and highlighting key findings. The controversy surrounding CFTR-dependent acidification is used as a case study to highlight difficulties in commensurability across model systems. Recent work in macrophage biology, including polarization and host-pathogen interaction studies, brought into the context of CFTR research, offers potential explanations for observed discrepancies between studies. Moreover, the rapid advancement of novel gene editing technologies and new macrophage model systems makes this assessment of the field's models and methodologies timely.


Assuntos
Fibrose Cística/patologia , Fibrose Cística/fisiopatologia , Macrófagos/patologia , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Modelos Biológicos , Mutação/genética , Fagossomos/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(30): 18018-18028, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32651278

RESUMO

CCN3 is a matricellular protein that promotes oligodendrocyte progenitor cell differentiation and myelination in vitro and ex vivo. CCN3 is therefore a candidate of interest in central nervous system (CNS) myelination and remyelination, and we sought to investigate the expression and role of CCN3 during these processes. We found CCN3 to be expressed predominantly by neurons in distinct areas of the CNS, primarily the cerebral cortex, hippocampus, amygdala, suprachiasmatic nuclei, anterior olfactory nuclei, and spinal cord gray matter. CCN3 was transiently up-regulated following demyelination in the brain of cuprizone-fed mice and spinal cord lesions of mice injected with lysolecithin. However, CCN3-/- mice did not exhibit significantly different numbers of oligodendroglia or differentiated oligodendrocytes in the healthy or remyelinating CNS, compared to WT controls. These results suggest that despite robust and dynamic expression in the CNS, CCN3 is not required for efficient myelination or remyelination in the murine CNS in vivo.


Assuntos
Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/etiologia , Regulação da Expressão Gênica , Proteína Sobre-Expressa em Nefroblastoma/genética , Remielinização/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Imunofluorescência , Camundongos , Bainha de Mielina/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia
13.
PLoS One ; 15(4): e0230782, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294093

RESUMO

Understanding immune responses to native antigens in response to natural infections can lead to improved approaches to vaccination. This study sought to characterize the humoral immune response to anthrax toxin components, capsule and spore antigens in individuals (n = 46) from the Kayseri and Malatya regions of Turkey who had recovered from mild or severe forms of cutaneous anthrax infection, compared to regional healthy controls (n = 20). IgG antibodies to each toxin component, the poly-γ-D-glutamic acid capsule, the Bacillus collagen-like protein of anthracis (BclA) spore antigen, and the spore carbohydrate anthrose, were detected in the cases, with anthrax toxin neutralization and responses to Protective Antigen (PA) and Lethal Factor (LF) being higher following severe forms of the disease. Significant correlative relationships among responses to PA, LF, Edema Factor (EF) and capsule were observed among the cases. Though some regional control sera exhibited binding to a subset of the tested antigens, these samples did not neutralize anthrax toxins and lacked correlative relationships among antigen binding specificities observed in the cases. Comparison of serum binding to overlapping decapeptides covering the entire length of PA, LF and EF proteins in 26 cases compared to 8 regional controls revealed that anthrax toxin-neutralizing antibody responses elicited following natural cutaneous anthrax infection are directed to conformational epitopes. These studies support the concept of vaccination approaches that preserve conformational epitopes.


Assuntos
Antraz/imunologia , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Epitopos/imunologia , Dermatopatias Bacterianas/imunologia , Adulto , Vacinas contra Antraz/imunologia , Especificidade de Anticorpos/imunologia , Bacillus anthracis/imunologia , Feminino , Humanos , Imunidade Humoral/imunologia , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Testes de Neutralização/métodos , Turquia , Adulto Jovem
14.
Artigo em Inglês | MEDLINE | ID: mdl-30858214

RESUMO

Using a murine model of Klebsiella pneumoniae bacterial infection, we demonstrate that gentamicin dissolving microarray patches, applied to murine ears, could control K. pneumoniae infection. Mice treated with microarray patches had reduced bacterial burden in the nasal-associated lymphoid tissue and lungs compared with their untreated counterparts. This proof of concept study represents the first published data on the in vivo delivery of the antibiotic gentamicin via dissolving microarray patches, resulting in the control of bacterial infection.


Assuntos
Gentamicinas/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Animais , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Camundongos
15.
J Antimicrob Chemother ; 73(12): 3391-3397, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219825

RESUMO

Objectives: To determine the antimicrobial activity of ALX-009, a combination of bovine lactoferrin and hypothiocyanite, in sputum against Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc), key pathogens causing infection in the lungs of cystic fibrosis (CF) patients. Methods: The antimicrobial activity of ALX-009 against clinical respiratory P. aeruginosa isolates was determined by time-kill assay. Sputum from CF patients was treated with ALX-009, either alone or in combination with tobramycin, and the effect on P. aeruginosa, Bcc and total sputum density was determined. Results: Time-kill assay indicated that ALX-009 was bactericidal at 24 h against 4/4 P. aeruginosa isolates under aerobic conditions, and against 3/4 isolates under anaerobic conditions. ALX-009 was also bactericidal against P. aeruginosa in sputum samples at 6 h (n = 22/24 samples) and 24 h (n = 14/24 samples), and demonstrated significantly greater activity than tobramycin at both timepoints. Activity against Bcc in sputum samples (n = 9) was also demonstrated, but the magnitude of change in Bcc density was less than for P. aeruginosa. To determine the effect of treating sputum with two doses of ALX-009, similar to current regimens for inhaled antibiotics, aliquots of a further 10 sputum samples positive for P. aeruginosa were treated with one (t = 0 h) or two doses (t = 0 h, t = 12 h) of ALX-009; treatment with two doses resulted in bactericidal activity in 7/10 samples at 34 h compared with only 3/10 samples when treatment was with one dose. Conclusions: ALX-009 demonstrates promise as a novel antimicrobial that could be used to decrease P. aeruginosa density in the lungs of people with CF.


Assuntos
Anti-Infecciosos/farmacologia , Complexo Burkholderia cepacia/efeitos dos fármacos , Fibrose Cística/microbiologia , Lactoferrina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Escarro/microbiologia , Tiocianatos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
16.
Int J Pharm ; 549(1-2): 87-95, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30048778

RESUMO

This work describes the formulation and evaluation of dissolving microneedle patches (MNs) for intradermal delivery of heat-inactivated bacteria. Pseudomonas aeruginosa, strain PA01, was used as a model bacterium. Utilising a simple, cost effective fabrication process, P. aeruginosa was heat-inactivated and formulated into dissolving MNs, fabricated from aqueous blends of 20% w/w poly(methylvinylether/maleic acid). The resultant MNs were of sufficient mechanical strength to consistently penetrate a validated skin model Parafilm M®, inserting to a depth of between 254 and 381 µm. MNs were successfully inserted into murine skin and partially dissolved. Analysis of MN dissolution kinetics in murine ears via optical coherence tomography showed almost complete MN dissolution 5 min post-insertion. Mice were vaccinated using these optimised MNs by application of one MN to the dorsal surface of each ear (5 min). Mice were subsequently challenged intranasally (24 h) with a live culture of P. aeruginosa (2 × 106 colony forming units). Bacterial load in the lungs of mice vaccinated with P. aeruginosa MNs was significantly (p = 0.0059) lower than those of their unvaccinated counterparts. This proof of concept work demonstrates the potential of dissolving MNs for intradermal vaccination with heat-inactivated bacteria. MNs may be a cost effective, potentially viable delivery system, which could easily be implemented in developing countries, allowing a rapid and simplified approach to vaccinating against a specific pathogen.


Assuntos
Vacinas Bacterianas/administração & dosagem , Sistemas de Liberação de Medicamentos , Pseudomonas aeruginosa/imunologia , Vacinação/métodos , Animais , Temperatura Alta , Injeções Intradérmicas , Maleatos/química , Camundongos , Microinjeções , Agulhas , Polietilenos/química , Estudo de Prova de Conceito , Pele/metabolismo , Solubilidade , Tomografia de Coerência Óptica
17.
Nat Commun ; 9(1): 1560, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674674

RESUMO

The NLRP3 inflammasome has an important function in inflammation by promoting the processing of pro-IL-1ß and pro-IL-18 to their mature bioactive forms, and by inducing cell death via pyroptosis. Here we show a critical function of the E3 ubiquitin ligase Pellino2 in facilitating activation of the NLRP3 inflammasome. Pellino2-deficient mice and myeloid cells have impaired activation of NLRP3 in response to toll-like receptor priming, NLRP3 stimuli and bacterial challenge. These functions of Pellino2 in the NLRP3 pathway are dependent on Pellino2 FHA and RING-like domains, with Pellino2 promoting the ubiquitination of NLRP3 during the priming phase of activation. We also identify a negative function of IRAK1 in the NLRP3 inflammasome, and describe a counter-regulatory relationship between IRAK1 and Pellino2. Our findings reveal a Pellino2-mediated regulatory signaling system that controls activation of the NLRP3 inflammasome.


Assuntos
Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas Nucleares/imunologia , Animais , Humanos , Inflamassomos/genética , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Domínios Proteicos , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação
18.
PLoS Pathog ; 13(11): e1006696, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29112952

RESUMO

Klebsiella pneumoniae is a significant cause of nosocomial pneumonia and an alarming pathogen owing to the recent isolation of multidrug resistant strains. Understanding of immune responses orchestrating K. pneumoniae clearance by the host is of utmost importance. Here we show that type I interferon (IFN) signaling protects against lung infection with K. pneumoniae by launching bacterial growth-controlling interactions between alveolar macrophages and natural killer (NK) cells. Type I IFNs are important but disparate and incompletely understood regulators of defense against bacterial infections. Type I IFN receptor 1 (Ifnar1)-deficient mice infected with K. pneumoniae failed to activate NK cell-derived IFN-γ production. IFN-γ was required for bactericidal action and the production of the NK cell response-amplifying IL-12 and CXCL10 by alveolar macrophages. Bacterial clearance and NK cell IFN-γ were rescued in Ifnar1-deficient hosts by Ifnar1-proficient NK cells. Consistently, type I IFN signaling in myeloid cells including alveolar macrophages, monocytes and neutrophils was dispensable for host defense and IFN-γ activation. The failure of Ifnar1-deficient hosts to initiate a defense-promoting crosstalk between alveolar macrophages and NK cell was circumvented by administration of exogenous IFN-γ which restored endogenous IFN-γ production and restricted bacterial growth. These data identify NK cell-intrinsic type I IFN signaling as essential driver of K. pneumoniae clearance, and reveal specific targets for future therapeutic exploitations.


Assuntos
Interferon Tipo I/imunologia , Células Matadoras Naturais/imunologia , Infecções por Klebsiella/imunologia , Macrófagos Alveolares/imunologia , Transdução de Sinais/imunologia , Animais , Resistência a Múltiplos Medicamentos/imunologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Cross-Talk/imunologia , Infecções Respiratórias/imunologia
19.
Int J Antimicrob Agents ; 50(3): 427-435, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28666755

RESUMO

There is a clear need for new antimicrobials to improve current treatment of chronic lung infection in people with cystic fibrosis (CF). This study determined the activities of antimicrobial peptides (AMPs) and ivacaftor, a novel CF transmembrane conductance regulator potentiator, for CF treatment. Antimicrobial activities of AMPs [LL37, human ß-defensins (HßD) 1-4 and SLPI] and ivacaftor against clinical respiratory isolates (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus spp., Achromobacter spp. and Stenotrophomonas maltophilia) were determined using radial diffusion and time-kill assays, respectively. Synergy of LL37 and ivacaftor with tobramycin was determined by time-kill, with in vivo activity of ivacaftor and tobramycin compared using a murine infection model. LL37 and HßD3 were the most active AMPs tested, with MICs ranging from 3.2- ≥ 200 mg/L and 4.8- ≥ 200 mg/L, respectively, except for Achromobacter that was resistant. HßD1 and SLPI demonstrated no antimicrobial activity. LL37 demonstrated synergy with tobramycin against 4/5 S. aureus and 2/5 Streptococcus spp. isolates. Ivacaftor demonstrated bactericidal activity against Streptococcus spp. (mean log10 decrease 3.31 CFU/mL) and bacteriostatic activity against S. aureus (mean log10 change 0.13 CFU/mL), but no activity against other genera. Moreover, ivacaftor demonstrated synergy with tobramycin, with mean log10 decreases of 5.72 CFU/mL and 5.53 CFU/mL at 24 h for S. aureus and Streptococcus spp., respectively. Ivacaftor demonstrated immunomodulatory but no antimicrobial activity in a P. aeruginosa in vivo murine infection model. Following further modulation to enhance activity, AMPs and ivacaftor offer real potential as therapeutics to augment antibiotic therapy of respiratory infection in CF.


Assuntos
Aminofenóis/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Agonistas dos Canais de Cloreto/farmacologia , Fibrose Cística/microbiologia , Fatores Imunológicos/farmacologia , Quinolonas/farmacologia , Aminofenóis/uso terapêutico , Animais , Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Contagem de Colônia Microbiana , Fibrose Cística/tratamento farmacológico , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Quinolonas/uso terapêutico , Resultado do Tratamento
20.
Nat Neurosci ; 20(5): 674-680, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28288125

RESUMO

Regeneration of CNS myelin involves differentiation of oligodendrocytes from oligodendrocyte progenitor cells. In multiple sclerosis, remyelination can fail despite abundant oligodendrocyte progenitor cells, suggesting impairment of oligodendrocyte differentiation. T cells infiltrate the CNS in multiple sclerosis, yet little is known about T cell functions in remyelination. We report that regulatory T cells (Treg) promote oligodendrocyte differentiation and (re)myelination. Treg-deficient mice exhibited substantially impaired remyelination and oligodendrocyte differentiation, which was rescued by adoptive transfer of Treg. In brain slice cultures, Treg accelerated developmental myelination and remyelination, even in the absence of overt inflammation. Treg directly promoted oligodendrocyte progenitor cell differentiation and myelination in vitro. We identified CCN3 as a Treg-derived mediator of oligodendrocyte differentiation and myelination in vitro. These findings reveal a new regenerative function of Treg in the CNS, distinct from immunomodulation. Although the cells were originally named 'Treg' to reflect immunoregulatory roles, this also captures emerging, regenerative Treg functions.


Assuntos
Encéfalo/fisiologia , Bainha de Mielina/fisiologia , Regeneração/fisiologia , Linfócitos T Reguladores/fisiologia , Animais , Encéfalo/ultraestrutura , Diferenciação Celular/fisiologia , Feminino , Masculino , Camundongos , Proteína Sobre-Expressa em Nefroblastoma/fisiologia , Oligodendroglia/fisiologia , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...