Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Trends Cancer ; 9(8): 636-649, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37258398

RESUMO

The nervous system is an important component of the tumor microenvironment (TME), driving tumorigenesis and tumor progression. Neuronal cues (e.g., neurotransmitters and neuropeptides) in the TME cause phenotypic changes in immune cells, such as increased exhaustion and inhibition of effector cells, which promote immune evasion and cancer progression. Two types of immune regulation by tumor-associated nerves are discussed in this review: regulation via neuronal stimuli (i.e., by neural transmission) and checkpoint-mediated neuronal immune regulation. The latter occurs via the expression of immune checkpoints on the membranes of intratumoral nerves and glial cells. Here, we summarize novel findings regarding the neuroimmune circuits in the tumor milieu, while emphasizing the potential targets of new and affordable anticancer therapeutic approaches.


Assuntos
Neoplasias , Neuroimunomodulação , Humanos , Imunoterapia , Neoplasias/patologia , Microambiente Tumoral
2.
Cell ; 186(8): 1652-1669, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059068

RESUMO

Immune checkpoint therapy (ICT) has dramatically altered clinical outcomes for cancer patients and conferred durable clinical benefits, including cure in a subset of patients. Varying response rates across tumor types and the need for predictive biomarkers to optimize patient selection to maximize efficacy and minimize toxicities prompted efforts to unravel immune and non-immune factors regulating the responses to ICT. This review highlights the biology of anti-tumor immunity underlying response and resistance to ICT, discusses efforts to address the current challenges with ICT, and outlines strategies to guide the development of subsequent clinical trials and combinatorial efforts with ICT.


Assuntos
Imunoterapia , Neoplasias , Humanos , Antígeno B7-H1 , Neoplasias/tratamento farmacológico , Ensaios Clínicos como Assunto , Inibidores de Checkpoint Imunológico/administração & dosagem
3.
Anticancer Res ; 43(3): 1239-1244, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36854525

RESUMO

BACKGROUND/AIM: Cyclooxygenase is an enzyme that transforms arachidonic acid to prostaglandins. Cyclooxygenase-2 (COX-2) is an isoform of cyclooxygenase. There exist many reports on the expression levels of COX-2 in cancer tissues, and prognosis of cancer patients has been reported to be related to COX-2 up-regulation. In the present study we assessed the suppressive effect of AHCC® on the expression of COX-2 in QRsP-11cells. MATERIALS AND METHODS: QR-32 is a clone which was derived from murine fibrosarcoma BMT-11 cells by treatment with quercetin. These clone cells regress spontaneously after injection into C57BL/6 mice. QRsP-11 is a clone derived from QR-32, showing very aggressive tumorigenicity. AHCC® is a standardized extract of cultured Lentinula edodes mycelia and has been reported to exert suppressive effects on various tumor-associated proteins including HSP27. The protein levels of COX-2 in QR-32 and QRsP-11 cells were compared by using western blotting. Furthermore, the expression levels of COX-2 were assessed in QRsP-11 cells after AHCC®-treatment. RESULTS: Western blot analysis showed a significant up-regulation of COX-2 in QRsP-11 cells compared to QR-32 cells. In vitro AHCC®-treatment increased COX-2 expression levels in QRsP-11 cells contrary to expectations. CONCLUSION: When using AHCC® in cancer treatment, it might be important to decrease COX-2 expression by means of non-steroidal anti-inflammatory drugs (NSAIDs), such as aspirin. Further studies are required to clarify the mechanism of up-regulation of COX-2 through AHCC®-treatment.


Assuntos
Produtos Biológicos , Ciclo-Oxigenase 2 , Fibrossarcoma , Cogumelos Shiitake , Animais , Camundongos , Ciclo-Oxigenase 2/efeitos dos fármacos , Fibrossarcoma/tratamento farmacológico , Inflamação , Camundongos Endogâmicos C57BL , Cogumelos Shiitake/química , Produtos Biológicos/farmacologia
4.
Anticancer Res ; 41(10): 4979-4984, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34593445

RESUMO

BACKGROUND/AIM: Proteomics is an approach that can detect differentially expressed proteins between cancerous and non-cancerous tissue samples. Previously, we found that vinculin was predominantly expressed in pancreatic cancerous tissues compared to adjacent non-cancerous tissues by performing proteomic differential display analysis. However, the clinicopathological significance of vinculin in pancreatic cancer has not yet been documented. MATERIALS AND METHODS: The GEPIA2 and the Human Protein Atlas databases were used to analyze vinculin expression levels in cancerous tissue samples and investigate whether its expression level is clinically associated with patient survival. RESULTS: Vinculin mRNA expression levels were solely increased in pancreatic cancer tissues, and increased expression was inversely related to patient survival. Higher levels of vinculin protein were found in pancreatic cancer tissues. In contrast, faint staining of vinculin was observed throughout the normal pancreatic tissues. CONCLUSION: Vinculin may be an unfavorable prognostic indicator for patients with pancreatic cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Neoplasias Pancreáticas/mortalidade , Vinculina/metabolismo , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Estudos de Casos e Controles , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , Taxa de Sobrevida , Vinculina/genética
5.
Oncol Lett ; 22(3): 654, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34386076

RESUMO

AHCC®, a standardized extract of cultured Lentinula edodes mycelia, enhances the therapeutic effects and reduces the adverse effects of chemotherapy. Our previous study reported that treatment with AHCC® downregulated the expression levels of tumor-associated proteins in the gemcitabine-resistant pancreatic cancer cell line, KLM1-R. However, to the best of our knowledge, the role of AHCC® in the inhibition of cell migration remains unexplored. Cortactin (CTTN), an actin nucleation-promoting factor, has been reported to be upregulated and correlated with migration, invasion and metastasis in pancreatic cancer cells. The present study aimed to investigate the effects of AHCC® on cell migration and the protein expression level of CTTN in KLM1-R cells. The Gene Expression Profiling Interactive Analysis (GEPIA2), an online bioinformatics platform, was used to analyze CTTN mRNA expression levels in pancreatic cancer tissues compared with normal pancreatic tissues. CTTN mRNA expression and its association with clinicopathological characteristics were assessed by using the GEPIA2 platform. Next, the effects of AHCC® on KLM1-R cell migration were investigated by in vitro wound-healing assay. The KLM1-R cells were treated with AHCC® at a concentration of 10 mg/ml for 48 h. Western blotting was performed on of cell lysates with anti-CTTN or anti-actin antibodies to assess the protein expression levels of CTTN. Bioinformatics analysis indicated that the mRNA expression level of CTTN increased in pancreatic cancer tissues. The increased mRNA expression levels of CTTN were inversely associated with clinicopathological characteristics, including disease stages and prolonged patient survival times. The administration of 10 mg/ml AHCC® significantly inhibited KLM1-R cells migration compared with controls. The protein expression levels of CTTN were significantly reduced in AHCC®-treated KLM1-R cells, whereas actin expression was not affected. The downregulation of CTTN indicated the anti-metastatic potential of AHCC® in pancreatic cancer cells. Overall, AHCC® may have the potential to be a complementary and alternative therapeutic approach in treating pancreatic cancer.

7.
Sci Rep ; 11(1): 10563, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34007003

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer with an abysmal prognosis rate over the last few decades. Early diagnosis and prevention could effectively combat this malignancy. Therefore, it is crucial to discover potential biomarkers to identify asymptomatic premalignant or early malignant tumors of PDAC. Gene expression analysis is a powerful technique to identify candidate biomarkers involved in disease progression. In the present study, five independent gene expression datasets, including 321 PDAC tissues and 208 adjacent non-cancerous tissue samples, were subjected to statistical and bioinformatics analysis. A total of 20 differentially expressed genes (DEGs) were identified in PDAC tissues compared to non-cancerous tissue samples. Gene ontology and pathway enrichment analysis showed that DEGs were mainly enriched in extracellular matrix (ECM), cell adhesion, ECM-receptor interaction, and focal adhesion signaling. The protein-protein interaction network was constructed, and the hub genes were evaluated. Collagen type XII alpha 1 chain (COL12A1), fibronectin 1 (FN1), integrin subunit alpha 2 (ITGA2), laminin subunit beta 3 (LAMB3), laminin subunit gamma 2 (LAMC2), thrombospondin 2 (THBS2), and versican (VCAN) were identified as hub genes. The correlation analysis revealed that identified hub genes were significantly interconnected. Wherein COL12A1, FN1, ITGA2, LAMB3, LAMC2, and THBS2 were significantly associated with PDAC pathological stages. The Kaplan-Meier survival plots revealed that ITGA2, LAMB3, and LAMC2 expression were inversely correlated with a prolonged patient survival period. Furthermore, the Human Protein Atlas database was used to validate the expression and cellular origins of hub genes encoded proteins. The protein expression of hub genes was higher in pancreatic cancer tissue than in normal pancreatic tissue samples, wherein ITGA2, LAMB3, and LAMC2 were exclusively expressed in pancreatic cancer cells. Pancreatic cancer cell-specific expression of these three proteins may play pleiotropic roles in cancer progression. Our results collectively suggest that ITGA2, LAMB3, and LAMC2 could provide deep insights into pancreatic carcinogenesis molecular mechanisms and provide attractive therapeutic targets.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Moléculas de Adesão Celular/genética , Biologia Computacional/métodos , Integrina alfa2/genética , Laminina/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/patologia , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Neoplasias Pancreáticas/patologia , RNA Mensageiro/genética , Transdução de Sinais , Análise de Sobrevida , Calinina
8.
Cancer Diagn Progn ; 1(4): 371-377, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35403140

RESUMO

Background/Aim: Malignant pleural mesothelioma (MPM) is a rare but very aggressive tumor that is primarily pleural in origin. The 5-year overall survival rate of patients with MPM has not improved despite therapeutic advances. Therefore, biomarker discovery to identify premalignant or early malignant tumors of the mesothelium are crucial. PEA15 is a cytoplasmic protein that is involved in various human malignancies, including MPM. However, the clinicopathological involvement of PEA15 in MPM has not yet been documented. Materials and Methods: The Oncomine database and GEPIA2 platform were used to analyze PEA15 mRNA expression and patient survival in patients with MPM. Results: PEA15 was found to be significantly up-regulated in MPM, and this up-regulation inversely correlated with prolonged patient survival. Further, PEA15 expression was found to be increased in other cancer tissues without affecting overall survival. Conclusion: PEA15 may represent a new potential prognostic biomarker in MPM patients.

9.
Clin Epigenetics ; 12(1): 12, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931863

RESUMO

BACKGROUND: DNA hypermethylation of tumor suppressor genes is observed in precancerous lesions and oral cancer of individuals with the habits of betel quid (BQ) chewing. SIRT1 has been identified as playing a role in the maintenance of epithelial integrity, and its alteration is often related to carcinogenesis. However, the methylation and transcription status of SIRT1 in patients with BQ chewing-related oral cancer has not been investigated. We examined the methylation status of SIRT1 in paraffin-embedded tissue samples of oral squamous cell carcinoma (OSCC) obtained from BQ chewing and non-chewing patients and in tissue samples from healthy control subjects. In addition, we examined whether the hypermethylation of SIRT1 followed by its transcriptional downregulation in the human gingival epithelial cells could be caused by arecoline, a major component of BQ. Furthermore, we investigated the methylation status of SIRT1 in smear samples of macroscopically healthy buccal mucosa from subjects with a habit of BQ chewing. RESULTS: SIRT1 was significantly hypermethylated in tissue samples of OSCC from BQ chewers and non-chewers than in oral mucosa from healthy control subjects. Results also showed that the hypermethylation level of SIRT1 was significantly higher in OSCC of patients with BQ chewing habits than in those of non-chewing habits (p < 0.05). Our in vitro model showed that hypermethylation is followed by downregulation of the transcriptional level of SIRT1 (p < 0.05). The methylation levels of SIRT1 in the smear samples obtained from BQ chewing individuals were significantly higher than those in the samples obtained from individuals that did not chew BQ. The duration of BQ chewing habits was correlated positively to the frequency of SIRT1 hypermethylation (p < 0.05). CONCLUSIONS: Our results suggest that DNA hypermethylation of SIRT1 is involved in the occurrence of oral cancer in BQ chewing patients and that hypermethylation in the oral mucosa of BQ chewers could be a predictive marker for the occurrence of malignant transformation. This is the first report that showed DNA hypermethylation in clinically healthy oral epithelium of BQ chewers. Our study shows evidence that DNA hypermethylation may be an early event of oral carcinogenesis prior to observable clinical changes.


Assuntos
Areca/efeitos adversos , Arecolina/genética , Carcinoma de Células Escamosas/genética , Metilação de DNA/genética , Sirtuína 1/genética , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , Transformação Celular Neoplásica/genética , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Humanos , Masculino , Mastigação/fisiologia , Pessoa de Meia-Idade , Mucosa Bucal/patologia , Neoplasias Bucais/patologia , Valor Preditivo dos Testes
10.
Curr Oncol Rep ; 21(6): 53, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31028548

RESUMO

PURPOSE OF REVIEW: The roles of the components of betel quid in oral carcinogenesis remain unclear. The purpose of the present review is to highlight the effect of each component of betel quid and to discuss the synergistic effects of other carcinogens along with betel quid in the development of oral cancer in habitual betel quid chewers. RECENT FINDINGS: Betel quid may synergistically participate in carcinogenesis by disrupting the compositions of oral microbiota, accompanied by endotoxins secretion and reactive oxygen species (ROS) production. Microbiome dysbiosis mediated by synergistic effects of betel quid chewing, smoking, and alcohol drinking is possibly linked to oral carcinogenesis, which is firstly discussed in this report. Betel quid and other carcinogenic components, mainly contribute to downregulate the antioxidant proteins and lead to the induction of ROS. The elimination of ROS may prove most effective chemoprevention for betel quid-mediated oral carcinogenesis.


Assuntos
Areca/química , Areca/toxicidade , Carcinógenos/toxicidade , Neoplasias Bucais/etiologia , Antioxidantes/uso terapêutico , Carcinogênese , Carcinógenos/química , Disbiose , Humanos , Inflamação , Mucosa Bucal/microbiologia , Mucosa Bucal/patologia , Neoplasias Bucais/microbiologia , Neoplasias Bucais/prevenção & controle , Espécies Reativas de Oxigênio/toxicidade
11.
Oncol Lett ; 17(1): 729-738, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30655824

RESUMO

The sirtuins (SIRTs) are a family of highly conserved histone deacetylases (HDACs) consisting of seven members (SIRT1-SIRT7). Over the past few decades, SIRT1 has been the most extensively studied and garnered tremendous attention in the scientific community due to its emerging role in cancer biology. However, its biological role in the regulation of oral cancer is not yet fully understood. Owing to contradictory findings regarding the role of SIRT1 in oral cancer, debate about it continues. The present study discusses the biological roles and potential therapeutic implications of SIRT1 in precancerous oral lesions and oral cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...