RESUMO
Quantum fluctuations in low-dimensional systems and near quantum phase transitions have significant influences on material properties. Yet, it is difficult to experimentally gauge the strength and importance of quantum fluctuations. Here we provide a resonant inelastic x-ray scattering study of magnon excitations in Mott insulating cuprates. From the thin film of SrCuO2, single- and bi-magnon dispersions are derived. Using an effective Heisenberg Hamiltonian generated from the Hubbard model, we show that the single-magnon dispersion is only described satisfactorily when including significant quantum corrections stemming from magnon-magnon interactions. Comparative results on La2CuO4 indicate that quantum fluctuations are much stronger in SrCuO2 suggesting closer proximity to a magnetic quantum critical point. Monte Carlo calculations reveal that other magnetic orders may compete with the antiferromagnetic Néel order as the ground state. Our results indicate that SrCuO2-due to strong quantum fluctuations-is a unique starting point for the exploration of novel magnetic ground states.
RESUMO
The ability to efficiently control charge and spin in the cuprate high-temperature superconductors is crucial for fundamental research and underpins technological development. Here, we explore the tunability of magnetism, superconductivity, and crystal structure in the stripe phase of the cuprate La[Formula: see text]Ba[Formula: see text]CuO[Formula: see text], with [Formula: see text] = 0.115 and 0.135, by employing temperature-dependent (down to 400 mK) muon-spin rotation and AC susceptibility, as well as X-ray scattering experiments under compressive uniaxial stress in the CuO[Formula: see text] plane. A sixfold increase of the three-dimensional (3D) superconducting critical temperature [Formula: see text] and a full recovery of the 3D phase coherence is observed in both samples with the application of extremely low uniaxial stress of [Formula: see text]0.1 GPa. This finding demonstrates the removal of the well-known 1/8-anomaly of cuprates by uniaxial stress. On the other hand, the spin-stripe order temperature as well as the magnetic fraction at 400 mK show only a modest decrease under stress. Moreover, the onset temperatures of 3D superconductivity and spin-stripe order are very similar in the large stress regime. However, strain produces an inhomogeneous suppression of the spin-stripe order at elevated temperatures. Namely, a substantial decrease of the magnetic volume fraction and a full suppression of the low-temperature tetragonal structure is found under stress, which is a necessary condition for the development of the 3D superconducting phase with optimal [Formula: see text]. Our results evidence a remarkable cooperation between the long-range static spin-stripe order and the underlying crystalline order with the three-dimensional fully coherent superconductivity. Overall, these results suggest that the stripe- and the SC order may have a common physical mechanism.
RESUMO
We present an in situ uniaxial pressure device optimized for small angle x-ray and neutron scattering experiments at low-temperatures and high magnetic fields. A stepper motor generates force, which is transmitted to the sample via a rod with an integrated transducer that continuously monitors the force. The device has been designed to generate forces up to 200 N in both compressive and tensile configurations, and a feedback control allows operating the system in a continuous-pressure mode as the temperature is changed. The uniaxial pressure device can be used for various instruments and multiple cryostats through simple and exchangeable adapters. It is compatible with multiple sample holders, which can be easily changed depending on the sample properties and the desired experiment and allow rapid sample changes.
RESUMO
In the cuprates, high-temperature superconductivity, spin-density-wave order, and charge-density-wave (CDW) order are intertwined, and symmetry determination is challenging due to domain formation. We investigated the CDW in the prototypical cuprate La_{1.88}Sr_{0.12}CuO_{4} via x-ray diffraction employing uniaxial pressure as a domain-selective stimulus to establish the unidirectional nature of the CDW unambiguously. A fivefold enhancement of the CDW amplitude is found when homogeneous superconductivity is partially suppressed by magnetic field. This field-induced state provides an ideal search environment for a putative pair-density-wave state.
RESUMO
The quantum Hall effect (QHE) is traditionally considered to be a purely two-dimensional (2D) phenomenon. Recently, however, a three-dimensional (3D) version of the QHE was reported in the Dirac semimetal ZrTe5. It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, spectroscopic, thermoelectric and charge transport measurements on such ZrTe5 samples. The measured properties: magnetization, ultrasound propagation, scanning tunneling spectroscopy, and Raman spectroscopy, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response emerges from the interplay of the intrinsic properties of the ZrTe5 electronic structure and its Dirac-type semi-metallic character.
RESUMO
We use resonant inelastic x-ray scattering to investigate charge-stripe correlations in La_{1.675}Eu_{0.2}Sr_{0.125}CuO_{4}. By differentiating elastic from inelastic scattering, it is demonstrated that charge-stripe correlations precede both the structural low-temperature tetragonal phase and the transport-defined pseudogap onset. The scattering peak amplitude from charge stripes decays approximately as T^{-2} towards our detection limit. The in-plane integrated intensity, however, remains roughly temperature independent. Therefore, although the incommensurability shows a remarkably large increase at high temperature, our results are interpreted via a single scattering constituent. In fact, direct comparison to other stripe-ordered compounds (La_{1.875}Ba_{0.125}CuO_{4}, La_{1.475}Nd_{0.4}Sr_{0.125}CuO_{4}, and La_{1.875}Sr_{0.125}CuO_{4}) suggests a roughly constant integrated scattering intensity across all these compounds. Our results therefore provide a unifying picture for the charge-stripe ordering in La-based cuprates. As charge correlations in La_{1.675}Eu_{0.2}Sr_{0.125}CuO_{4} extend beyond the low-temperature tetragonal and pseudogap phase, their emergence heralds a spontaneous symmetry breaking in this compound.
RESUMO
The charge density wave in the high-temperature superconductor YBa2Cu3O7-x (YBCO) has two different ordering tendencies differentiated by their c-axis correlations. These correspond to ferro- (F-CDW) and antiferro- (AF-CDW) couplings between CDWs in neighbouring CuO2 bilayers. This discovery has prompted several fundamental questions: how does superconductivity adjust to two competing orders and are either of these orders responsible for the electronic reconstruction? Here we use x-ray diffraction to study YBa2Cu3O6.67 as a function of magnetic field and temperature. We show that regions with F-CDW correlations suppress superconductivity more strongly than those with AF-CDW correlations. This implies that an inhomogeneous superconducting state exists, in which some regions show a fragile form of superconductivity. By comparison of F-CDW and AF-CDW correlation lengths, it is concluded that F-CDW ordering is sufficiently long-range to modify the electronic structure. Our study thus suggests that F-CDW correlations impact both the superconducting and normal state properties of YBCO.
RESUMO
The transition temperature Tc of unconventional superconductivity is often tunable. For a monolayer of FeSe, for example, the sweet spot is uniquely bound to titanium-oxide substrates. By contrast for La2-xSrxCuO4 thin films, such substrates are sub-optimal and the highest Tc is instead obtained using LaSrAlO4. An outstanding challenge is thus to understand the optimal conditions for superconductivity in thin films: which microscopic parameters drive the change in Tc and how can we tune them? Here we demonstrate, by a combination of x-ray absorption and resonant inelastic x-ray scattering spectroscopy, how the Coulomb and magnetic-exchange interaction of La2CuO4 thin films can be enhanced by compressive strain. Our experiments and theoretical calculations establish that the substrate producing the largest Tc under doping also generates the largest nearest neighbour hopping integral, Coulomb and magnetic-exchange interaction. We hence suggest optimising the parent Mott state as a strategy for enhancing the superconducting transition temperature in cuprates.
RESUMO
A combined resistivity and hard x-ray diffraction study of superconductivity and charge ordering in Ir Ir1-xPtxTe2, as a function of Pt substitution and externally applied hydrostatic pressure, is presented. Experiments are focused on samples near the critical composition x c ~ 0.045 where competition and switching between charge order and superconductivity is established. We show that charge order as a function of pressure in Ir0.95Pt0.05Te2 is preempted - and hence triggered - by a structural transition. Charge ordering appears uniaxially along the short crystallographic (1, 0, 1) domain axis with a (1/5, 0, 1/5) modulation. Based on these results we draw a charge-order phase diagram and discuss the relation between stripe ordering and superconductivity.
RESUMO
The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings â¼0.123, we find that a field (Bâ¼10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction at Bâ¼15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing Fermi surface reconstruction, as recently suggested.