Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3940, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750036

RESUMO

Hepatocytes play important roles in the liver, but in culture, they immediately lose function and dedifferentiate into progenitor-like cells. Although this unique feature is well-known, the dynamics and mechanisms of hepatocyte dedifferentiation and the differentiation potential of dedifferentiated hepatocytes (dediHeps) require further investigation. Here, we employ a culture system specifically established for hepatic progenitor cells to study hepatocyte dedifferentiation. We found that hepatocytes dedifferentiate with a hybrid epithelial/mesenchymal phenotype, which is required for the induction and maintenance of dediHeps, and exhibit Vimentin-dependent propagation, upon inhibition of the Hippo signaling pathway. The dediHeps re-differentiate into mature hepatocytes by forming aggregates, enabling reconstitution of hepatic tissues in vivo. Moreover, dediHeps have an unexpected differentiation potential into intestinal epithelial cells that can form organoids in three-dimensional culture and reconstitute colonic epithelia after transplantation. This remarkable plasticity will be useful in the study and treatment of intestinal metaplasia and related diseases in the liver.


Assuntos
Desdiferenciação Celular , Diferenciação Celular , Células Epiteliais , Hepatócitos , Animais , Hepatócitos/citologia , Hepatócitos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Camundongos , Organoides/citologia , Organoides/metabolismo , Transição Epitelial-Mesenquimal , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Células Cultivadas , Transdução de Sinais , Vimentina/metabolismo , Via de Sinalização Hippo , Fígado/citologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Técnicas de Cultura de Células/métodos
2.
Anat Histol Embryol ; 53(1): e12976, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37724608

RESUMO

Mouse embryos in the early-implantation stage require manipulation under a microscope. While the extraction of DNA, RNA and proteins from a single sample allows for both determination of genetic type and analysis of gene expression, whole mount analysis is not possible. In this study, we explored the applicability of PCR using extraembryonic tissues, especially the decidual side tissue after isolating the embryos from implantation sites to establish a method for determining the genetic type of embryos. The implantation site was resected at each day from the date of vaginal plug confirmation, separated into embryos and deciduae. Genomic DNA were isolated separately from the embryos and the deciduae. PCR was performed using these genomic DNA, and the band patterns were compared after electrophoresis. As a result, we demonstrated that detecting embryo-derived cells in the decidua allows determination of the sex and presence of transgenes without harming the mouse embryos themselves, from 8.5 days of age. This method enables the determination of the genetic type of mouse embryos without damaging. This technique would expand the adaptations for analysis of mouse implanted embryos.


Assuntos
Decídua , Implantação do Embrião , Feminino , Camundongos , Animais , Decídua/metabolismo , Implantação do Embrião/genética , DNA/metabolismo
3.
Reprod Med Biol ; 22(1): e12520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389156

RESUMO

Purpose: TRANSLIN (TSN) and its binding partner TSNAX have been reported to contribute to a wide spectrum of biological activities including spermatogenesis. TSN accompanies specific mRNA transport in male germ cells through intercellular bridges. A testis-expressed protein TSNAXIP1 was reported to interact with TSNAX. However the role of TSNAXIP1 in spermatogenesis remained unclear. This study aimed to elucidate the role of TSNAXIP1 in spermatogenesis and male fertility in mice. Methods: TSNAXIP1 knockout (KO) mice were generated using the CRISPR-Cas9 system. The fertility, spermatogenesis, and sperm of TSNAXIP1 KO males were analyzed. Results: TSNAXIP1, and especially its domains, are highly conserved between mouse and human. Tsnaxip1 was expressed in testis, but not in ovary. TSNAXIP1 KO mice were generated, and TSNAXIP1 KO males were found to be sub-fertile with smaller testis and lower sperm count. Although no overt abnormalities were observed during spermatogenesis, lack of TSNAXIP1 induced sperm head malformation, resulting in a unique flower-shaped sperm head. Moreover, abnormal anchorage of the sperm neck was frequently observed in TSNAXIP1 null sperm. Conclusion: A testis-expressed gene TSNAXIP1 has important roles in sperm head morphogenesis and male fertility. Moreover, TSNAXIP1 could be a causative gene for human infertility.

4.
Zoolog Sci ; 38(6): 531-543, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34854285

RESUMO

In this study, we examined the effects of calyculin A, a phosphatase inhibitor, on motility, protein phosphorylation, and the distribution of phospho-(Ser/Thr) PKA substrates in frozen-thawed bull spermatozoa that are actually used by most farmers for breeding. The data showed that calyculin A, which has been reported to have a positive effect on the motility of ejaculated fresh spermatozoa, distinctly decreased the motility of frozen-thawed bull spermatozoa even if a cell activator, such as caffeine, was present in the incubation medium and that the suppressive effect of calyculin A was dose-dependent and continued for at least 200 min. Immunoblot analyses revealed that de novo protein phosphorylation was not detected in spermatozoa exposed to caffeine or dbcAMP (a cell-permeable cAMP analog), while the addition of calyculin A to the medium brought about the appearance of several phosphorylated proteins at 50 kDa and 75 kDa, suggesting that 50 kDa and 75 kDa proteins, which were phosphorylated by activation of cAMP-dependent PKA, were not dephosphorylated and were accumulated in spermatozoa due to the suppression of calyculin A-sensitive protein phosphatases. Immunofluorescence microscopy revealed that calyculin A caused, alone or in conjunction with caffeine or dbcAMP, the accumulation of phospho-PKA substrates at the annulus, although caffeine or dbcAMP alone did not. This study suggested that calyculin A decreases the motility of frozen-thawed bull spermatozoa concomitant with the accumulation of phospho-(Ser/Thr) PKA substrates at the annulus of flagella.


Assuntos
AMP Cíclico , Motilidade dos Espermatozoides , Animais , Bovinos , Criopreservação , AMP Cíclico/metabolismo , Masculino , Toxinas Marinhas , Oxazóis , Fosforilação , Espermatozoides
5.
PLoS One ; 16(6): e0253897, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34185806

RESUMO

During spermatogenesis, nuclear architecture of male germ cells is dynamically changed and epigenetic modifications, in particular methylation of histones, highly contribute to its regulation as well as differentiation of male germ cells. Although several methyltransferases and demethylases for histone H3 are involved in the regulation of spermatogenesis, roles of either histone H4 lysine 20 (H4K20) methyltransferases or H4K20 demethylases during spermatogenesis still remain to be elucidated. Recently, RSBN1 which is a testis-specific gene expressed in round spermatids was identified as a demethylase for dimethyl H4K20. In this study, therefore, we confirm the demethylase function of RSBN1 and compare distributions between RSBN1 and methylated H4K20 in the seminiferous tubules. Unlike previous report, expression analyses for RSBN1 reveal that RSBN1 is not a testis-specific gene and is expressed not only in round spermatids but also in elongated spermatids. In addition, RSBN1 can demethylate not only dimethyl H4K20 but also trimethyl H4K20 and could convert both dimethyl H4K20 and trimethyl H4K20 into monomethyl H4K20. When distribution pattern of RSBN1 in the seminiferous tubule is compared to that of methylated H4K20, both dimethyl H4K20 and trimethyl H4K20 but not monomethyl H4K20 are disappeared from RSBN1 positive germ cells, suggesting that testis-specific distribution patterns of methylated H4K20 might be constructed by RSBN1. Thus, novel expression and function of RSBN1 could be useful to comprehend epigenetic regulation during spermatogenesis.


Assuntos
Diferenciação Celular/genética , Histonas/genética , Proteínas de Homeodomínio/genética , Proteínas de Plasma Seminal/genética , Espermatogênese/genética , Animais , Núcleo Celular/genética , Células Germinativas/crescimento & desenvolvimento , Lisina/genética , Masculino , Metilação , Camundongos , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
6.
Exp Anim ; 70(1): 84-90, 2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32999214

RESUMO

Production of chimeric animals is often a necessity for the generation of genetically modified animals and has gained popularity in recent years in regenerative medicine for the reconstruction of xenogeneic organs. Aggregation and injection methods are generally used to produce chimeric mice. In the aggregation method, the chimeras are produced by co-culturing embryos and stem cells, and keeping them physically adhered, although it may not be an assured method for producing chimeric embryos. In the injection method, the chimeras are produced by injecting stem cells into the zona pellucida using microcapillaries; however, this technique requires a high degree of skill. This study aimed to establish a novel method for producing chimeric embryos via water-in-oil droplets that differs from conventional methods. In this study, embryonic stem cells and embryos were successfully isolated in the droplets, and the emergence of chimeric embryos was confirmed by co-culture for 6 h. Using this method, the control and operability of stem cell numbers could be regulated, and reproducibility and quantification were improved during the production of chimeric embryos. In addition to the conventional methods for producing chimeric embryos, the novel method described here could be employed for the efficient production of chimeric animals.


Assuntos
Animais Geneticamente Modificados , Quimera , Técnicas de Cocultura/métodos , Técnicas de Cultura Embrionária/métodos , Embrião de Mamíferos , Células-Tronco Embrionárias , Óleos , Água , Animais , Células Cultivadas , Feminino , Camundongos , Transplante de Células-Tronco/métodos , Zona Pelúcida
7.
Zygote ; 28(3): 247-249, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32151294

RESUMO

Polyploids generated by natural whole genome duplication have served as a dynamic force in vertebrate evolution. As evidence for evolution, polyploid organisms exist generally, however there have been no reports of polyploid organisms in mammals. In mice, polyploid embryos under normal culture conditions normally develop to the blastocyst stage. Nevertheless, most tetraploid embryos degenerate after implantation, indicating that whole genome duplication produces harmful effects on normal development in mice. Most previous research on polyploidy has mainly focused on tetraploid embryos. Analysis of various ploidy outcomes is important to comprehend the effects of polyploidization on embryo development. The purpose of this present study was to discover the extent of the polyploidization effect on implantation and development in post-implantation embryos. This paper describes for the first time an octaploid embryo implanted in mice despite hyper-polyploidization, and indicates that these mammalian embryos have the ability to implant, and even develop, despite the harmfulness of extreme whole genome duplication.


Assuntos
Blastocisto/metabolismo , Implantação do Embrião , Transferência Embrionária/métodos , Genoma/genética , Poliploidia , Animais , Blastocisto/citologia , Diploide , Feminino , Histocitoquímica/métodos , Camundongos Endogâmicos ICR , Tetraploidia
8.
Biol Reprod ; 102(5): 1134-1144, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31995159

RESUMO

Intercellular bridges (ICBs) connecting germ cells are essential for spermatogenesis, and their deletion causes male infertility. However, the functions and component factors of ICBs are still unknown. We previously identified novel ICB-associated proteins by proteomics analysis using ICB enrichment. Here, we performed immunoprecipitation-proteomics analyses using antibodies specific to known ICB proteins MKLP1, RBM44, and ectoplasmic specialization-associated protein KIAA1210 and predicted protein complexes in the ICB cores. KIAA1210, its binding protein topoisomerase2B (TOP2B), and tight junction protein ZO1 were identified as novel ICB proteins. On the other hand, as well as KIAA1210 and TOP2B, MKLP1 and RBM44, but not TEX14, were localized at the XY body of spermatocytes, suggesting that there is a relationship between ICB proteins and meiotic chromosomes. Moreover, small RNAs interacted with an ICB protein complex that included KIAA1210, RBM44, and MKLP1. These results indicate dynamic movements of ICB proteins and suggest that ICB proteins could be involved not only in the communication between germ cells but also in their epigenetic regulation. Our results provide a novel perspective on the function of ICBs and could be helpful in revealing the biological function of the ICB.


Assuntos
Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Proteômica/métodos , Testículo/metabolismo , Animais , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Regulação da Expressão Gênica , Cinesinas/genética , Cinesinas/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
EMBO Rep ; 20(12): e48251, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31657143

RESUMO

Formation of primordial follicles is a fundamental, early process in mammalian oogenesis. However, little is known about the underlying mechanisms. We herein report that the RNA-binding proteins ELAVL2 and DDX6 are indispensable for the formation of quiescent primordial follicles in mouse ovaries. We show that Elavl2 knockout females are infertile due to defective primordial follicle formation. ELAVL2 associates with mRNAs encoding components of P-bodies (cytoplasmic RNP granules involved in the decay and storage of RNA) and directs the assembly of P-body-like granules by promoting the translation of DDX6 in oocytes prior to the formation of primordial follicles. Deletion of Ddx6 disturbs the assembly of P-body-like granules and severely impairs the formation of primordial follicles, indicating the potential importance of P-body-like granules in the formation of primordial follicles. Furthermore, Ddx6-deficient oocytes are abnormally enlarged due to misregulated PI3K-AKT signaling. Our data reveal that an ELAVL2-directed post-transcriptional network is essential for the formation of quiescent primordial follicles.


Assuntos
Proteína Semelhante a ELAV 2/metabolismo , Redes Reguladoras de Genes , Infertilidade Feminina/genética , Folículo Ovariano/metabolismo , Animais , Células Cultivadas , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteína Semelhante a ELAV 2/genética , Feminino , Camundongos , Oogênese , Folículo Ovariano/citologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
10.
Biol Reprod ; 96(2): 469-477, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28203736

RESUMO

Cell junctions are necessary for spermatogenesis, and there are numerous types of junctions in testis, such as blood­testis barrier, intercellular bridge, and ectoplasmic specialization (ES). The details of their functions and construction are still unknown. To identify a novel protein essential to the function of a cell junction, we enriched testis membrane protein and analyzed it using a proteomics approach. Here, we report a novel ES protein, which is encoded on the X chromosome and an ortholog of hypothetical human protein KIAA1210. KIAA1210 is expressed in testis predominantly, localized to the sex body in spermatocyte, acrosome, and near ES. Moreover, KIAA1210 possesses a topoisomerase 2 (TOP2)-associated protein PAT1 domain, a herpes simplex virus 1 (HSV-1) large tegument protein UL36 hypothetical domain, and a provisional DNA translocase FtsK domain. Using IP-proteomics with specific antibody to KIAA1210, we identified proteins including TOP2 isoforms as components of a complex with KIAA1210, in cell junctions in testis. The interaction between KIAA1210 and TOP2 was confirmed by two different proteomic analyses. Furthermore, immunofluorescence showed that KIAA1210 and TOP2B co-localize around the sex body in spermatocyte, apical ES, and residual bodies in elongated spermatids. Our findings suggest that KIAA1210 may be essential cell junction protein that interacts with TOP2B to regulate the dynamic change of chromatin structures during spermiogenesis.


Assuntos
Acrossomo/metabolismo , Regulação da Expressão Gênica/fisiologia , Genes Ligados ao Cromossomo X/fisiologia , Proteínas de Membrana/metabolismo , Testículo/fisiologia , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Masculino , Proteínas de Membrana/genética , Camundongos , Transporte Proteico
11.
Brain Struct Funct ; 222(4): 1663-1672, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27568378

RESUMO

During catabolism of tryptophan through the kynurenine (KYN) pathway, several endogenous metabolites with neuromodulatory properties are produced, of which kynurenic acid (KYNA) is one of the highest significance. The causal role of altered KYNA production has been described in several neurodegenerative and neuropsychiatric disorders (e.g., Parkinson's disease, Huntington's disease, schizophrenia) and therefore kynurenergic manipulation with the aim of therapy has recently been proposed. Conventionally, KYNA is produced from its precursor L-KYN with the aid of the astrocytic kynurenine aminotransferase-2 (KAT-2) in the murine brain. Although the mouse is a standard therapeutic research organism, the presence of KAT-2 in mice has not been described in detail. This study demonstrates the presence of kat-2 mRNA and protein throughout the adult C57Bl6 mouse brain. In addition to the former expression data from the rat, we found prominent KAT-2 expression not only in the astrocyte, but also in neurons in several brain regions (e.g., hippocampus, substantia nigra, striatum, and prefrontal cortex). A significant number of the KAT-2 positive neurons were positive for GAD67; the presence of the KAT-2 enzyme we could also demonstrate in mice brain homogenate and in cells overexpressing recombinant mouse KAT-2 protein. This new finding attributes a new role to interneuron-derived KYNA in neuronal network operation. Furthermore, our results suggest that the thorough investigation of the spatio-temporal expression pattern of the relevant enzymes of the KYN pathway is a prerequisite for developing and understanding the pharmacological and transgenic murine models of kynurenergic manipulation.


Assuntos
Astrócitos/enzimologia , Encéfalo/enzimologia , Transaminases/análise , Animais , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/análise
12.
Proc Natl Acad Sci U S A ; 113(37): E5408-15, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27573846

RESUMO

Splicing can be epigenetically regulated and involved in cellular differentiation in somatic cells, but the interplay of epigenetic factors and the splicing machinery during spermatogenesis remains unclear. To study these interactions in vivo, we generated a germline deletion of MORF-related gene on chromosome 15 (MRG15), a multifunctional chromatin organizer that binds to methylated histone H3 lysine 36 (H3K36) in introns of transcriptionally active genes and has been implicated in regulation of histone acetylation, homology-directed DNA repair, and alternative splicing in somatic cells. Conditional KO (cKO) males lacking MRG15 in the germline are sterile secondary to spermatogenic arrest at the round spermatid stage. There were no significant alterations in meiotic division and histone acetylation. Specific mRNA sequences disappeared from 66 germ cell-expressed genes in the absence of MRG15, and specific intronic sequences were retained in mRNAs of 4 genes in the MRG15 cKO testes. In particular, introns were retained in mRNAs encoding the transition proteins that replace histones during sperm chromatin condensation. In round spermatids, MRG15 colocalizes with splicing factors PTBP1 and PTBP2 at H3K36me3 sites between the exons and single intron of transition nuclear protein 2 (Tnp2). Thus, our results reveal that MRG15 is essential for pre-mRNA splicing during spermatogenesis and that epigenetic regulation of pre-mRNA splicing by histone modification could be useful to understand not only spermatogenesis but also, epigenetic disorders underlying male infertile patients.


Assuntos
Proteínas Cromossômicas não Histona/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Infertilidade Masculina/genética , Proteínas do Tecido Nervoso/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Espermatogênese/genética , Transativadores/genética , Animais , Proteínas de Ligação a DNA , Epigênese Genética , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/patologia , Histona-Lisina N-Metiltransferase/genética , Humanos , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Splicing de RNA/genética , Deleção de Sequência/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
13.
Biochem Biophys Res Commun ; 476(4): 546-552, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27255992

RESUMO

In mouse testes, spermatogonial stem cells (SSCs), a subpopulation of GFRα1 (GDNF family receptor-α1)-positive spermatogonia, are widely distributed along the convoluted seminiferous tubules. The proliferation and differentiation of the SSCs are regulated in part by local expression of GDNF (glial cell-derived neurotorphic factor), one of major niche factors for SSCs. However, the in vivo dynamics of the GDNF-stimulated GFRα1-positive spermatogonia remains unclear. Here, we developed a simple method for transplanting DiI-labeled and GDNF-soaked beads into the mouse testicular interstitium. By using this method, we examined the dynamics of GFRα1-positive spermatogonia in the tubular walls close to the transplanted GDNF-soaked beads. The bead-derived GDNF signals were able to induce the stratified aggregate formation of GFRα1-positive undifferentiated spermatogonia by day 3 post-transplantation. Each aggregate consisted of tightly compacted Asingle and marginal Apaired-Aaligned GFRα1-positive spermatogonia and was surrounded by Aaligned GFRα1-negative spermatogonia at more advanced stages. These data not only provide in vivo evidence for the inductive roles of GDNF in forming a rapid aggregation of GFRα1-positive spermatogonia but also indicate the usefulness of this in vivo assay system of various growth factors for the stem/progenitor spermatogonia in mammalian spermatogenesis.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Espermatogônias/metabolismo , Animais , Agregação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Implantes de Medicamento/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Transdução de Sinais , Espermatogênese/efeitos dos fármacos , Espermatogênese/fisiologia , Espermatogônias/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Testículo/citologia , Testículo/efeitos dos fármacos , Testículo/metabolismo
14.
Front Behav Neurosci ; 9: 157, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26136670

RESUMO

L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice.

15.
PLoS One ; 8(8): e72689, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967333

RESUMO

The spermatogonial stem cell (SSC) compartment is maintained by self-renewal of stem cells as well as fragmentation of differentiating spermatogonia through abscission of intercellular bridges in a random and stochastic manner. The molecular mechanisms that regulate this reversible developmental lineage remain to be elucidated. Here, we show that histone H3K27 demethylase, JMJD3 (KDM6B), regulates the fragmentation of spermatogonial cysts. Down-regulation of Jmjd3 in SSCs promotes an increase in undifferentiated spermatogonia but does not affect their differentiation. Germ cell-specific Jmjd3 null male mice have larger testes and sire offspring for a longer period compared to controls, likely secondary to increased and prolonged maintenance of the spermatogonial compartment. Moreover, JMJD3 deficiency induces frequent fragmentation of spermatogonial cysts by abscission of intercellular bridges. These results suggest that JMJD3 controls the spermatogonial compartment through the regulation of fragmentation of spermatogonial cysts and this mechanism may be involved in maintenance of diverse stem cell niches.


Assuntos
Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Espermatogônias/fisiologia , Animais , Desdiferenciação Celular , Diferenciação Celular/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Masculino , Metilação , Camundongos , Fenótipo , Transporte Proteico , Espermatogênese/fisiologia , Espermatogônias/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Testículo/citologia , Testículo/metabolismo
16.
PLoS One ; 7(6): e38914, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719986

RESUMO

Stem cells have a potential of gene therapy for regenerative medicine. Among various stem cells, spermatogonial stem cells have a unique characteristic in which neighboring cells can be connected by intercellular bridges. However, the roles of intercellular bridges for stem cell self-renewal, differentiation, and proliferation remain to be elucidated. Here, we show not only the characteristics of testis-expressed gene 14 (TEX14) null spermatogonial stem cells lacking intercellular bridges but also a trial application of genetic correction of a mutation in spermatogonial stem cells as a model for future gene therapy. In TEX14 null testes, some genes important for undifferentiated spermatogonia as well as some differentiation-related genes were activated. TEX14 null spermatogonial stem cells, surprisingly, could form chain-like structures even though they do not form stable intercellular bridges. TEX14 null spermatogonial stem cells in culture possessed both characteristics of undifferentiated and differentiated spermatogonia. Long-term culture of TEX14 null spermatogonial stem cells could not be established likely secondary to up-regulation of CDK4 inhibitors and down-regulation of cyclin E. These results suggest that intercellular bridges are essential for both maintenance of spermatogonial stem cells and their proliferation. Lastly, a mutation in Tex14(+/-) spermatogonial stem cells was successfully replaced by homologous recombination in vitro. Our study provides a therapeutic potential of spermatogonial stem cells for reproductive medicine if they can be cultured long-term.


Assuntos
Mutação , Espermatogônias/citologia , Células-Tronco/citologia , Fatores de Transcrição/genética , Animais , Sequência de Bases , Separação Celular , Primers do DNA , Heterozigoto , Masculino , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Recombinação Genética , Testículo/citologia
17.
Exp Anim ; 61(1): 67-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22293674

RESUMO

Whey acidic protein (WAP) has been identified as a major whey protein in milk of a wide range of species and reportedly plays important roles in regulating the proliferation of mammary epithelial cells. However, in some species including humans, WAP is not synthesized in the mammary gland. The presence of WAP in carnivore species has not been reported. We searched the National Center for Biotechnology Information (NCBI) database for the dog WAP gene and tried biochemically to identify WAP in dog milk. The nucleotide sequence of the examined dog genomic DNA was completely identical to that in the NCBI database and showed that the dog WAP gene, like other known functional WAP genes, has four exons. Biochemical analysis of milk protein by reverse-phase HPLC and Western blotting demonstrated the presence of WAP in dog milk.


Assuntos
Cães/genética , Proteínas do Leite/isolamento & purificação , Leite/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting/veterinária , Biologia Computacional , Cães/metabolismo , Feminino , Leite/metabolismo , Proteínas do Leite/química , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/veterinária , Alinhamento de Sequência/veterinária
18.
Cold Spring Harb Perspect Biol ; 3(8): a005850, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21669984

RESUMO

Stable intercellular bridges are a conserved feature of gametogenesis in multicellular animals observed more than 100 years ago, but their function was unknown. Many of the components necessary for this structure have been identified through the study of cytokinesis in Drosophila; however, mammalian intercellular bridges have distinct properties from those of insects. Mammalian germ cell intercellular bridges are composed of general cytokinesis components with additional germ cell-specific factors including TEX14. TEX14 is an inactive kinase essential for the maintenance of stable intercellular bridges in gametes of both sexes but whose loss specifically impairs male meiosis. TEX14 acts to impede the terminal steps of abscission by competing for essential component CEP55, blocking its interaction in nongerm cells with ALIX and TSG101. Additionally, TEX14-interacting protein RBM44, whose localization in stabile intercellular bridges is limited to pachytene and secondary spermatocytes, may participate in processes such as RNA transport but is nonessential to the maintenance of intercellular bridge stability.


Assuntos
Citocinese , Gametogênese , Células Germinativas/fisiologia , Junções Intercelulares/fisiologia , Animais , Drosophila melanogaster/fisiologia , Humanos , Mamíferos/fisiologia , Fatores de Transcrição/fisiologia
19.
PLoS One ; 6(2): e17066, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21364893

RESUMO

Intercellular bridges are evolutionarily conserved structures that connect differentiating germ cells. We previously reported the identification of TEX14 as the first essential intercellular bridge protein, the demonstration that intercellular bridges are required for male fertility, and the finding that intercellular bridges utilize components of the cytokinesis machinery to form. Herein, we report the identification of RNA binding motif protein 44 (RBM44) as a novel germ cell intercellular bridge protein. RBM44 was identified by proteomic analysis after intercellular bridge enrichment using TEX14 as a marker protein. RBM44 is highly conserved between mouse and human and contains an RNA recognition motif of unknown function. RBM44 mRNA is enriched in testis, and immunofluorescence confirms that RBM44 is an intercellular bridge component. However, RBM44 only partially localizes to TEX14-positive intercellular bridges. RBM44 is expressed most highly in pachytene and secondary spermatocytes, but disappears abruptly in spermatids. We discovered that RBM44 interacts with itself and TEX14 using yeast two-hybrid, mammalian two-hybrid, and immunoprecipitation. To define the in vivo function of RBM44, we generated a targeted deletion of Rbm44 in mice. Rbm44 null male mice produce somewhat increased sperm, and show enhanced fertility of unknown etiology. Thus, although RBM44 localizes to intercellular bridges during meiosis, RBM44 is not required for fertility in contrast to TEX14.


Assuntos
Junções Intercelulares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/isolamento & purificação , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Cobaias , Humanos , Junções Intercelulares/genética , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Espermatogênese/genética , Espermatogênese/fisiologia , Testículo/metabolismo , Distribuição Tecidual , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Mol Cell Biol ; 30(9): 2280-92, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20176808

RESUMO

In somatic cells, abscission, the physical separation of daughter cells at the completion of cytokinesis, requires CEP55, ALIX, and TSG101. In contrast, cytokinesis is arrested prior to abscission in differentiating male germ cells that are interconnected by TEX14-positive intercellular bridges. We have previously shown that targeted deletion of TEX14 disrupts intercellular bridges in all germ cells and causes male sterility. Although these findings demonstrate that intercellular bridges are essential for spermatogenesis, it remains to be shown how TEX14 and other proteins come together to prevent abscission and form stable intercellular bridges. Using a biochemical enrichment of male germ cell intercellular bridges, we identified additional bridge proteins, including CEP55. Although CEP55 is highly expressed in testes at the RNA level, there is no report of the presence of CEP55 in germ cells. We show here that CEP55 becomes a stable component of the intercellular bridge and that an evolutionarily conserved GPPX3Y motif of TEX14 binds strongly to CEP55 to block similar GPPX3Y motifs of ALIX and TSG101 from interacting and localizing to the midbody. Thus, TEX14 prevents the completion of cytokinesis by altering the destiny of CEP55 from a nidus for abscission to an integral component of the intercellular bridge.


Assuntos
Citocinese , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Sequência Conservada , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Humanos , Junções Intercelulares/metabolismo , Masculino , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Ovário/citologia , Ovário/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Testículo/citologia , Testículo/metabolismo , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...