RESUMO
Porous boron nitrides possess beneficial properties such as high thermal and chemical stability which are critical for applications in adsorption processes. In order to assess possible fields of applications, trace-level adsorption isotherms of different hydrocarbons on two synthesized porous boron nitrides and two commercial activated carbons are compared. By normalizing the adsorptive loadings on the micropore surface area, superior adsorption performances of the BN materials on polar and aromatic adsorptives with up to 50% higher loadings compared to the activated carbons can be shown. Nonpolar adsorptives, on the other hand, feature higher specific loadings on the activated carbon. Consequently, the size of the micropore surface appears to be decisive for nonpolar adsorptives, while the higher polarity of the boron nitrides is the dominant influencing factor for the adsorption of polar and aromatic components. For an energetic study of the adsorbents, calorimetric experiments were performed to identify and discuss adsorbent-adsorptive interactions. While the initial heat of adsorption of the nonpolar n-hexane is lower on the boron nitride than on the activated carbon due to a less favorable spatial arrangement, toluene shows comparable values on both adsorbent classes and the polar acetone shows higher values on the polar boron nitride. Considering technical applications in adsorption technology, the thermal stability of the boron nitrides is investigated using spontaneous ignition temperatures and points of initial oxidation. Here, the porous boron nitrides with oxidation temperatures above 900 °C show about 400 °C higher values and thus a significantly higher thermal stability.
RESUMO
When impregnated with manganiferous precursors, γ-Al2O3 may be converted into α-Al2O3 under relatively mild and energy-saving conditions. In this work, a manganese assisted conversion to corundum at temperatures as low as 800 °C is investigated. To observe the alumina phase transition, XRD and solid-state 27Al-MAS-NMR are applied. By post-synthetical treatment in concentrated HCl, residual manganese is removed up to 3 wt.-%. Thereby, α-Al2O3 with a high specific surface area of 56 m2 g-1 is obtained after complete conversion. Just as for transition alumina, thermal stability is an important issue for corundum. Long-term stability tests were performed at 750 °C for 7 days. Although highly porous corundum was synthesized, the porosity decreased with time at common process temperatures.
RESUMO
High-temperature treatment of functional nanomaterials, through postsynthesis calcination, often represents an important step to unlock their full potential. However, such calcination steps usually severely limit the preparation of colloidal solutions of the nanoparticles due to the formation of sintered agglomerates. Herein, a simple route is reported to obtain colloidal solutions of calcined n-conductive antimony doped tin oxide (ATO) as well as titanium dioxide (TiO2 ) nanoparticles without the need for additional sacrificial materials. This is achieved by making use of the reduced contact between individual nanoparticles when they are assembled into aerogels. Following the calcination of the aerogels at 500 °C, redispersion of the nanoparticles into stable colloidal solutions with various solvents can be achieved. Although a slight degree of sintering is inevitable, the size of the resulting aggregates in solution is still remarkably small with values below 30 nm.
RESUMO
Integration of solvothermal reaction products into complex thin-layer architectures is frequently achieved by combinations of layer transfer and subtractive lithography, whereas direct additive substrate patterning with solvothermal reaction products has remained challenging. We report reactive additive capillary stamping under solvothermal conditions as a parallel contact-lithographic access to patterns of solvothermal reaction products in thin-layer configurations. To this end, corresponding precursor inks are infiltrated into mechanically robust mesoporous aerogel stamps derived from double-network hydrogels. The stamp is then brought into contact with a substrate to be patterned under solvothermal reaction conditions inside an autoclave. The precursor ink forms liquid bridges between the topographic surface pattern of the stamp and the substrate. Evaporation-driven enrichment of the precursors in these liquid bridges, along with their liquid-bridge-guided conversion into the solvothermal reaction products, yields large-area submicron patterns of the solvothermal reaction products replicating the stamp topography. For example, we prepared thin hybrid films, which contained ordered monolayers of superparamagnetic submicron nickel ferrite dots prepared by solvothermal capillary stamping surrounded by nickel electrodeposited in a second orthogonal substrate functionalization step. The submicron nickel ferrite dots acted as a magnetic hardener, halving the remanence of the ferromagnetic nickel layer. In this way, thin-layer electromechanical systems, transformers, and positioning systems may be customized.
RESUMO
Since the recent discovery of the template-free synthesis of porous boron nitride, research on the synthesis and application of the material has steadily increased. Nevertheless, the formation mechanism of boron nitride is not yet fully understood. Especially for the complex precursor decomposition of urea-based turbostratic boron nitride (t-BN), a profound understanding is still lacking. Therefore, in this publication, we investigate the influence of different common pre-heating temperatures of 100, 200, 300, and 400 °C on the subsequent properties of t-BN. We show that the structure and porosity of t-BN can be changed by preheating, where a predominantly mesoporous material can be obtained. Within these investigations, the sample BN-300/2 depicts the highest mesopore surface area of 242 m2 g-1 with a low amount of micropores compared to other BNs. By thermal gravimetric analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy, valid details about the formation of intermediates, types of chemical bonds, and the generation of t-BN are delivered. Hence, we conclude that the formation of a mesoporous material arises due to a more complete decomposition of the urea precursor by pre-heating.