Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Gigascience ; 9(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126136

RESUMO

BACKGROUND: Tibetan hull-less barley (Hordeum vulgare L. var. nudum) is one of the primary crops cultivated in the mountains of Tibet and encounters low temperature, high salinity, and drought. Specifically, drought is one of the major abiotic stresses that affect and limit Tibetan barley growth. Osmotic stress is often simultaneously accompanied by drought conditions. Thus, to improve crop yield, it is critical to explore the molecular mechanism governing the responses of hull-less barley to osmotic/drought stress conditions. FINDINGS: In this study, we used quantitative proteomics by data-independent acquisition mass spectrometry to investigate protein abundance changes in tolerant (XL) and sensitive (DQ) cultivars. A total of 6,921 proteins were identified and quantified in all samples. Two distinct strategies based on pairwise and time-course comparisons were utilized in the comprehensive analysis of differentially abundant proteins. Further functional analysis of differentially abundant proteins revealed that some hormone metabolism-associated and phytohormone abscisic acid-induced genes are primarily affected by osmotic stress. Enhanced regulation of reactive oxygen species (may promote the tolerance of hull-less barley under osmotic stress. Moreover, we found that some regulators, such as GRF, PR10, MAPK, and AMPK, were centrally positioned in the gene regulatory network, suggesting that they may have a dominant role in the osmotic stress response of Tibetan barley. CONCLUSIONS: Our findings highlight a subset of proteins and processes that are involved in the alleviation of osmotic stress. In addition, this study provides a large-scale and multidimensional proteomic data resource for the further investigation and improvement of osmotic/drought stress tolerance in hull-less barley or other plant species.


Assuntos
Hordeum/genética , Pressão Osmótica , Proteoma/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Hordeum/metabolismo , Espectrometria de Massas/métodos , Proteoma/química , Proteoma/metabolismo , Transcriptoma
2.
Bioinformation ; 15(12): 845-852, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32256004

RESUMO

Nitrogen (N) is an essential macronutrient for plants. However, excessive use of N fertilizer for cultivation is an environmental hazard. A good adaption to N deficiency is known in the Tibetan hulless barley. Therefore, it is of interest to complete the metabolic analysis on LSZQK which is a low nitrogen (low-N) sensitive genotype and Z0284 that is tolerant to low-N. We identified and quantified 750 diverse metabolites in this analysis. The two genotypes show differences in their basal metabolome under normal N condition. Polyphenols and lipids related metabolites were significantly enriched in Z0284 having a basal role prior to exposure to low-N stress. Analysis of the differentially accumulated metabolites (DAM) induced by low-N explain the genotype-specific responses. Fourteen DAMs showed similar patterns of change between low-N and control conditions in both genotypes. This could be the core low-N responsive metabolites regardless of the tolerance level in hulless barley. We also identified 4 DAMs (serotonin, MAG (18:4) isomer 2, tricin 7-O-feruloylhexoside and gluconic acid) shared by both genotypes displaying opposite patterns of regulation under low-N conditions and may play important roles in low-N tolerance. This report provides a theoretical basis for further understanding of the molecular mechanisms of low-N stress tolerance in hulless barley.

3.
Sci Rep ; 8(1): 14928, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297768

RESUMO

Powdery mildew is a fungal disease that represents a ubiquitous threat to crop plants. Transcriptomic and metabolomic analyses were used to identify molecular and physiological changes in Tibetan hulless barley in response to powdery mildew. There were 3418 genes and 405 metabolites differentially expressed between the complete resistance cultivar G7 and the sensitive cultivar Z13. Weighted gene coexpression network analysis was carried out, and the differentially expressed genes were enriched in five and four major network modules in G7 and Z13, respectively. Further analyses showed that phytohormones, photosynthesis, phenylpropanoid biosynthesis, and flavonoid biosynthesis pathways were altered during Qingke-Blumeria graminis (DC.) f.sp. hordei (Bgh) interaction. Comparative analyses showed a correspondence between gene expression and metabolite profiles, and the activated defenses resulted in changes of metabolites involved in plant defense response, such as phytohormones, lipids, flavone and flavonoids, phenolamides, and phenylpropanoids. This study enabled the identification of Bgh responsive genes and provided new insights into the dynamic physiological changes that occur in Qingke during response to powdery mildew. These findings greatly improve our understanding of the mechanisms of induced defense response in Qingke and will provide new clues for the development of resistant Tibetan hulless barley varieties.


Assuntos
Ascomicetos/fisiologia , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Resistência à Doença , Redes Reguladoras de Genes , Hordeum/metabolismo , Metaboloma , Metabolômica , Proteínas de Plantas/metabolismo , Tibet , Transcriptoma
4.
Biomed Res Int ; 2018: 9415409, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671479

RESUMO

Tibetan hulless barley is widely grown in the extreme environmental conditions of the Qinghai-Tibet Plateau which is characterized by cold, high salinity, and drought. Osmotic stress always occurs simultaneously with drought and its tolerance is a vital part of drought tolerance. The diversity of metabolites leading to osmotic stress tolerance was characterized using widely-targeted metabolomics in tolerant (XL) and sensitive (D) accessions submitted to polyethylene glycol. XL regulated a more diverse set of metabolites than D, which may promote the establishment of a robust system to cope with the stress in XL. Compounds belonging to the group of flavonoids, amino acids, and glycerophospholipids constitute the core metabolome responsive to the stress, despite the tolerance levels. Moreover, 8 h appeared to be a critical time point for stress endurance involving a high accumulation of key metabolites from the class of nucleotide and its derivative which provide the ultimate energy source for the synthesis of functional carbohydrates, lipids, peptides, and secondary metabolites in XL. This intrinsic metabolic adjustment helped XL to efficiently alleviate the stress at the later stages. A total of 22 diverse compounds were constantly and exclusively regulated in XL, representing novel stress tolerance biomarkers which may help improving stress tolerance, especially drought, in hulless barley.


Assuntos
Hordeum/metabolismo , Hordeum/fisiologia , Metaboloma/fisiologia , Pressão Osmótica/fisiologia , Estresse Fisiológico/fisiologia , Aminoácidos/metabolismo , Biomarcadores/metabolismo , Secas , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Glicerofosfolipídeos/metabolismo , Metabolômica/métodos , Nucleotídeos/metabolismo , Salinidade , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...