Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 425: 152250, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31326399

RESUMO

Evidence suggests that low concentration perinatal exposure to environmental contaminants, such as organophosphate (OP) is associated with later life insulin resistance and type 2 diabetes. The aim of this work was to investigate whether chronic maternal OP exposure exacerbates metabolic dysfunctions in early-overfed rats. During pregnancy and lactational periods, dams received OP by gavage. To induce neonatal overnutrition at postnatal day 3, pups were standardized to 9 or 3 per nest. At 90-days-old, glucose-insulin homeostasis and insulin release from pancreatic islets were analyzed. While both OP exposure and overfeeding alone did induce diabetogenic phenotypes in adulthood, there was no exacerbation in rats that experienced both. Unexpectedly, the group that experienced both had improved adiposity, metabolic parameters, attenuated insulin release from isolated islets in the presence of glucose and low function of muscarinic acetylcholine receptor M3, as well as an attenuation of beta cell mass hyperplasia. High levels of butyrylcholinesterase and low levels of insulin in milk may contribute to the OP-induced developmental programming. Our study showed that maternal OP exposure may program insulin release as well as endocrine pancreas structure, thus affecting metabolism in adulthood. Our data suggest that while perinatal OP exposure alone increases the risk for later life T2D, it actually reverses many of the programmed metabolic dysfunction that is induced by postnatal overfeeding. These surprising results may suggest that low-dose administration of acetylcholinesterase inhibitors could be of utility in preventing detrimental developmental programming that is caused by early-life overnutrition.


Assuntos
Inibidores da Colinesterase/farmacologia , Exposição Materna , Doenças Metabólicas/tratamento farmacológico , Organofosfatos/farmacologia , Hipernutrição/tratamento farmacológico , Animais , Animais Recém-Nascidos , Glicemia/análise , Composição Corporal/efeitos dos fármacos , Inibidores da Colinesterase/administração & dosagem , Ingestão de Energia/efeitos dos fármacos , Feminino , Teste de Tolerância a Glucose , Insulina/sangue , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Doenças Metabólicas/etiologia , Organofosfatos/administração & dosagem , Hipernutrição/complicações , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Ratos , Ratos Wistar
2.
Front Physiol ; 8: 807, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163186

RESUMO

An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF) diet during adolescence. The effect of physical training (Ex) in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w) for 30 days then subsequently fed a normal fat diet (NF) for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se). At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex) were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive system, but moderate and low frequency physical training is able to recover adipose tissue deposition and reproductive system alterations induced by high fat diet. This study highlights the importance of a balanced diet and continued physical activity during adolescence, with regard to metabolic and reproductive health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...