Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 125(6): 628-642, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31310161

RESUMO

RATIONALE: Preclinical testing of cardiotoxicity and efficacy of novel heart failure therapies faces a major limitation: the lack of an in situ culture system that emulates the complexity of human heart tissue and maintains viability and functionality for a prolonged time. OBJECTIVE: To develop a reliable, easily reproducible, medium-throughput method to culture pig and human heart slices under physiological conditions for a prolonged period of time. METHODS AND RESULTS: Here, we describe a novel, medium-throughput biomimetic culture system that maintains viability and functionality of human and pig heart slices (300 µm thickness) for 6 days in culture. We optimized the medium and culture conditions with continuous electrical stimulation at 1.2 Hz and oxygenation of the medium. Functional viability of these slices over 6 days was confirmed by assessing their calcium homeostasis, twitch force generation, and response to ß-adrenergic stimulation. Temporal transcriptome analysis using RNAseq at day 2, 6, and 10 in culture confirmed overall maintenance of normal gene expression for up to 6 days, while over 500 transcripts were differentially regulated after 10 days. Electron microscopy demonstrated intact mitochondria and Z-disc ultra-structures after 6 days in culture under our optimized conditions. This biomimetic culture system was successful in keeping human heart slices completely viable and functionally and structurally intact for 6 days in culture. We also used this system to demonstrate the effects of a novel gene therapy approach in human heart slices. Furthermore, this culture system enabled the assessment of contraction and relaxation kinetics on isolated single myofibrils from heart slices after culture. CONCLUSIONS: We have developed and optimized a reliable medium-throughput culture system for pig and human heart slices as a platform for testing the efficacy of novel heart failure therapeutics and reliable testing of cardiotoxicity in a 3-dimensional heart model.


Assuntos
Biomimética/métodos , Ventrículos do Coração/ultraestrutura , Função Ventricular/fisiologia , Adulto , Animais , Feminino , Coração/fisiologia , Ventrículos do Coração/citologia , Humanos , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Miocárdio/citologia , Miocárdio/ultraestrutura , Técnicas de Cultura de Órgãos/métodos , Suínos , Transcriptoma/fisiologia
2.
Nat Genet ; 50(4): 515-523, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29379199

RESUMO

Amplification of the locus encoding the oncogenic transcription factor MYCN is a defining feature of high-risk neuroblastoma. Here we present the first dynamic chromatin and transcriptional landscape of MYCN perturbation in neuroblastoma. At oncogenic levels, MYCN associates with E-box binding motifs in an affinity-dependent manner, binding to strong canonical E-boxes at promoters and invading abundant weaker non-canonical E-boxes clustered at enhancers. Loss of MYCN leads to a global reduction in transcription, which is most pronounced at MYCN target genes with the greatest enhancer occupancy. These highly occupied MYCN target genes show tissue-specific expression and are linked to poor patient survival. The activity of genes with MYCN-occupied enhancers is dependent on the tissue-specific transcription factor TWIST1, which co-occupies enhancers with MYCN and is required for MYCN-dependent proliferation. These data implicate tissue-specific enhancers in defining often highly tumor-specific 'MYC target gene signatures' and identify disruption of the MYCN enhancer regulatory axis as a promising therapeutic strategy in neuroblastoma.


Assuntos
Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Amplificação de Genes , Genes myc , Humanos , Cinética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Oncogenes , Regiões Promotoras Genéticas , Proteína 1 Relacionada a Twist/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...