Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783512

RESUMO

Millets, comprising a diverse group of small-seeded grains, have emerged as vital crops with immense nutritional, environmental, and economic significance. The comprehension of complex traits in millets, influenced by multifaceted genetic determinants, presents a compelling challenge and opportunity in agricultural research. This review delves into the transformative roles of phenomics and genomics in deciphering these intricate genetic architectures. On the phenomics front, high-throughput platforms generate rich datasets on plant morphology, physiology, and performance in diverse environments. This data, coupled with field trials and controlled conditions, helps to interpret how the environment interacts with genetics. Genomics provides the underlying blueprint for these complex traits. Genome sequencing and genotyping technologies have illuminated the millet genome landscape, revealing diverse gene pools and evolutionary relationships. Additionally, different omics approaches unveil the intricate information of gene expression, protein function, and metabolite accumulation driving phenotypic expression. This multi-omics approach is crucial for identifying candidate genes and unfolding the intricate pathways governing complex traits. The review highlights the synergy between phenomics and genomics. Genomically informed phenotyping targets specific traits, reducing the breeding size and cost. Conversely, phenomics identifies promising germplasm for genomic analysis, prioritizing variants with superior performance. This dynamic interplay accelerates breeding programs and facilitates the development of climate-smart, nutrient-rich millet varieties and hybrids. In conclusion, this review emphasizes the crucial roles of phenomics and genomics in unlocking the genetic enigma of millets.


Assuntos
Genômica , Milhetes , Fenômica , Genômica/métodos , Milhetes/genética , Fenótipo , Genoma de Planta/genética , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética
3.
Sci Rep ; 12(1): 21552, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513706

RESUMO

Production of phosphorus efficient genotypes in groundnut can improve and also reduces environmental pollution. Identification of P-efficient groundnut genotypes is a need of the hour to sustain in P-deficient soils. The pot experiment showed significant differences between genotypes (G) and treatments (T) for all the traits and G × T interaction for majority of traits. The G × T × Y interaction effects were also significant for all the traits except leaf P% (LP%), leaf acid phosphatase (LAP) and root dry weight (RDW). In lysimeter experiment, the effect of G, T and G × T were significant for leaf dry weight (LDW), stem dry weight (SDW), total transpiration (TT) and transpiration efficiency (TE). For traits, LDW, SDW, TT, TE, ICGV 00351 and ICGS 76; for SDW, TT, ICGV 02266 are best performers under both P-sufficient and deficient conditions. Based on P-efficiency indices and surrogate traits of P-uptake, ICGV's 02266, 05155, 00308, 06040 and 06146 were considered as efficient P-responding genotypes. From GGE biplot, ICGV 06146 under P-deficient and TAG 24 under both P-sufficient and deficient conditions are portrayed as best performer. ICGV 06146 was identified as stable pod yielder and a promising genotype for P-deficient soils. The genotypes identified in this study can be used as a parent in developing mapping population to decipher the genetics and to devleop groundnut breeding lines suitable to P-deficient soils.


Assuntos
Arachis , Fósforo , Arachis/genética , Melhoramento Vegetal , Fenótipo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...