RESUMO
The cell is arguably the most fundamental unit of life and is central to understanding biology. Accurate modeling of cells is important for this understanding as well as for determining the root causes of disease. Recent advances in artificial intelligence (AI), combined with the ability to generate large-scale experimental data, present novel opportunities to model cells. Here we propose a vision of leveraging advances in AI to construct virtual cells, high-fidelity simulations of cells and cellular systems under different conditions that are directly learned from biological data across measurements and scales. We discuss desired capabilities of such AI Virtual Cells, including generating universal representations of biological entities across scales, and facilitating interpretable in silico experiments to predict and understand their behavior using Virtual Instruments. We further address the challenges, opportunities and requirements to realize this vision including data needs, evaluation strategies, and community standards and engagement to ensure biological accuracy and broad utility. We envision a future where AI Virtual Cells help identify new drug targets, predict cellular responses to perturbations, as well as scale hypothesis exploration. With open science collaborations across the biomedical ecosystem that includes academia, philanthropy, and the biopharma and AI industries, a comprehensive predictive understanding of cell mechanisms and interactions has come into reach.
RESUMO
Mapping neuronal networks is a central focus in neuroscience. While volume electron microscopy (vEM) can reveal the fine structure of neuronal networks (connectomics), it does not provide molecular information to identify cell types or functions. We developed an approach that uses fluorescent single-chain variable fragments (scFvs) to perform multiplexed detergent-free immunolabeling and volumetric-correlated-light-and-electron-microscopy on the same sample. We generated eight fluorescent scFvs targeting brain markers. Six fluorescent probes were imaged in the cerebellum of a female mouse, using confocal microscopy with spectral unmixing, followed by vEM of the same sample. The results provide excellent ultrastructure superimposed with multiple fluorescence channels. Using this approach, we documented a poorly described cell type, two types of mossy fiber terminals, and the subcellular localization of one type of ion channel. Because scFvs can be derived from existing monoclonal antibodies, hundreds of such probes can be generated to enable molecular overlays for connectomic studies.
Assuntos
Córtex Cerebelar , Animais , Feminino , Camundongos , Córtex Cerebelar/metabolismo , Córtex Cerebelar/citologia , Córtex Cerebelar/ultraestrutura , Microscopia Confocal/métodos , Microscopia Eletrônica/métodos , Conectoma/métodos , Neurônios/metabolismo , Neurônios/ultraestrutura , Corantes Fluorescentes/química , Camundongos Endogâmicos C57BL , CitologiaAssuntos
Inteligência Artificial , Conectoma , Conectoma/métodos , Humanos , Animais , Encéfalo/fisiologiaRESUMO
To fully understand how the human brain works, knowledge of its structure at high resolution is needed. Presented here is a computationally intensive reconstruction of the ultrastructure of a cubic millimeter of human temporal cortex that was surgically removed to gain access to an underlying epileptic focus. It contains about 57,000 cells, about 230 millimeters of blood vessels, and about 150 million synapses and comprises 1.4 petabytes. Our analysis showed that glia outnumber neurons 2:1, oligodendrocytes were the most common cell, deep layer excitatory neurons could be classified on the basis of dendritic orientation, and among thousands of weak connections to each neuron, there exist rare powerful axonal inputs of up to 50 synapses. Further studies using this resource may bring valuable insights into the mysteries of the human brain.
Assuntos
Córtex Cerebral , Humanos , Axônios/fisiologia , Axônios/ultraestrutura , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/ultraestrutura , Dendritos/fisiologia , Neurônios/ultraestrutura , Oligodendroglia/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestrutura , Lobo Temporal/ultraestrutura , MicroscopiaRESUMO
Primary cilia act as antenna receivers of environmental signals and enable effective neuronal or glial responses. Disruption of their function is associated with circuit disorders. To understand the signals these cilia receive, we comprehensively mapped cilia's contacts within the human cortical connectome using serial-section EM reconstruction of a 1 mm3 cortical volume, spanning the entire cortical thickness. We mapped the "contactome" of cilia emerging from neurons and astrocytes in every cortical layer. Depending on the layer and cell type, cilia make distinct patterns of contact. Primary cilia display cell-type- and layer-specific variations in size, shape, and microtubule axoneme core, which may affect their signaling competencies. Neuronal cilia are intrinsic components of a subset of cortical synapses and thus a part of the connectome. This diversity in the structure, contactome, and connectome of primary cilia endows each neuron or glial cell with a unique barcode of access to the surrounding neural circuitry.
Assuntos
Cílios , Conectoma , Humanos , Neurônios/fisiologia , Córtex Cerebral , Neuroglia/fisiologiaRESUMO
Connectomics is a nascent neuroscience field to map and analyze neuronal networks. It provides a new way to investigate abnormalities in brain tissue, including in models of Alzheimer's disease (AD). This age-related disease is associated with alterations in amyloid-ß (Aß) and phosphorylated tau (pTau). These alterations correlate with AD's clinical manifestations, but causal links remain unclear. Therefore, studying these molecular alterations within the context of the local neuronal and glial milieu may provide insight into disease mechanisms. Volume electron microscopy (vEM) is an ideal tool for performing connectomics studies at the ultrastructural level, but localizing specific biomolecules within large-volume vEM data has been challenging. Here we report a volumetric correlated light and electron microscopy (vCLEM) approach using fluorescent nanobodies as immuno-probes to localize Alzheimer's disease-related molecules in a large vEM volume. Three molecules (pTau, Aß, and a marker for activated microglia (CD11b)) were labeled without the need for detergents by three nanobody probes in a sample of the hippocampus of the 3xTg Alzheimer's disease model mouse. Confocal microscopy followed by vEM imaging of the same sample allowed for registration of the location of the molecules within the volume. This dataset revealed several ultrastructural abnormalities regarding the localizations of Aß and pTau in novel locations. For example, two pTau-positive post-synaptic spine-like protrusions innervated by axon terminals were found projecting from the axon initial segment of a pyramidal cell. Three pyramidal neurons with intracellular Aß or pTau were 3D reconstructed. Automatic synapse detection, which is necessary for connectomics analysis, revealed the changes in density and volume of synapses at different distances from an Aß plaque. This vCLEM approach is useful to uncover molecular alterations within large-scale volume electron microscopy data, opening a new connectomics pathway to study Alzheimer's disease and other types of dementia.
RESUMO
Maps of the nervous system that identify individual cells along with their type, subcellular components and connectivity have the potential to elucidate fundamental organizational principles of neural circuits. Nanometer-resolution imaging of brain tissue provides the necessary raw data, but inferring cellular and subcellular annotation layers is challenging. We present segmentation-guided contrastive learning of representations (SegCLR), a self-supervised machine learning technique that produces representations of cells directly from 3D imagery and segmentations. When applied to volumes of human and mouse cortex, SegCLR enables accurate classification of cellular subcompartments and achieves performance equivalent to a supervised approach while requiring 400-fold fewer labeled examples. SegCLR also enables inference of cell types from fragments as small as 10 µm, which enhances the utility of volumes in which many neurites are truncated at boundaries. Finally, SegCLR enables exploration of layer 5 pyramidal cell subtypes and automated large-scale analysis of synaptic partners in mouse visual cortex.
Assuntos
Neurópilo , Córtex Visual , Humanos , Animais , Camundongos , Neuritos , Células Piramidais , Aprendizado de Máquina Supervisionado , Processamento de Imagem Assistida por ComputadorRESUMO
Detergent-free immunolabeling has been proven feasible for correlated light and electron microscopy, but its application is restricted by the availability of suitable affinity reagents. Here we introduce CAptVE, a method using slow off-rate modified aptamers for cell fluorescence labeling on ultrastructurally reconstructable electron micrographs. CAptVE provides labeling for a wide range of biomarkers, offering a pathway to integrate molecular analysis into recent approaches to delineate neural circuits via connectomics.
RESUMO
Mapping neuronal networks that underlie behavior has become a central focus in neuroscience. While serial section electron microscopy (ssEM) can reveal the fine structure of neuronal networks (connectomics), it does not provide the molecular information that helps identify cell types or their functional properties. Volumetric correlated light and electron microscopy (vCLEM) combines ssEM and volumetric fluorescence microscopy to incorporate molecular labeling into ssEM datasets. We developed an approach that uses small fluorescent single-chain variable fragment (scFv) immuno-probes to perform multiplexed detergent-free immuno-labeling and ssEM on the same samples. We generated eight such fluorescent scFvs that targeted useful markers for brain studies (green fluorescent protein, glial fibrillary acidic protein, calbindin, parvalbumin, voltage-gated potassium channel subfamily A member 2, vesicular glutamate transporter 1, postsynaptic density protein 95, and neuropeptide Y). To test the vCLEM approach, six different fluorescent probes were imaged in a sample of the cortex of a cerebellar lobule (Crus 1), using confocal microscopy with spectral unmixing, followed by ssEM imaging of the same sample. The results show excellent ultrastructure with superimposition of the multiple fluorescence channels. Using this approach we could document a poorly described cell type in the cerebellum, two types of mossy fiber terminals, and the subcellular localization of one type of ion channel. Because scFvs can be derived from existing monoclonal antibodies, hundreds of such probes can be generated to enable molecular overlays for connectomic studies.
RESUMO
Mapping neuronal networks that underlie behavior has become a central focus in neuroscience. While serial section electron microscopy (ssEM) can reveal the fine structure of neuronal networks (connectomics), it does not provide the molecular information that helps identify cell types or their functional properties. Volumetric correlated light and electron microscopy (vCLEM) combines ssEM and volumetric fluorescence microscopy to incorporate molecular labeling into ssEM datasets. We developed an approach that uses small fluorescent single-chain variable fragment (scFv) immuno-probes to perform multiplexed detergent-free immuno-labeling and ssEM on the same samples. We generated eight such fluorescent scFvs that targeted useful markers for brain studies (green fluorescent protein, glial fibrillary acidic protein, calbindin, parvalbumin, voltage-gated potassium channel subfamily A member 2, vesicular glutamate transporter 1, postsynaptic density protein 95, and neuropeptide Y). To test the vCLEM approach, six different fluorescent probes were imaged in a sample of the cortex of a cerebellar lobule (Crus 1), using confocal microscopy with spectral unmixing, followed by ssEM imaging of the same sample. The results show excellent ultrastructure with superimposition of the multiple fluorescence channels. Using this approach we could document a poorly described cell type in the cerebellum, two types of mossy fiber terminals, and the subcellular localization of one type of ion channel. Because scFvs can be derived from existing monoclonal antibodies, hundreds of such probes can be generated to enable molecular overlays for connectomic studies.
RESUMO
The ability to acquire ever larger datasets of brain tissue using volume electron microscopy leads to an increasing demand for the automated extraction of connectomic information. We introduce SyConn2, an open-source connectome analysis toolkit, which works with both on-site high-performance compute environments and rentable cloud computing clusters. SyConn2 was tested on connectomic datasets with more than 10 million synapses, provides a web-based visualization interface and makes these data amenable to complex anatomical and neuronal connectivity queries.
Assuntos
Conectoma , Microscopia Eletrônica , Sinapses , Neurônios , EncéfaloRESUMO
Associative memory formation and recall in the fruit fly Drosophila melanogaster is subserved by the mushroom body (MB). Upon arrival in the MB, sensory information undergoes a profound transformation from broadly tuned and stereotyped odorant responses in the olfactory projection neuron (PN) layer to narrowly tuned and nonstereotyped responses in the Kenyon cells (KCs). Theory and experiment suggest that this transformation is implemented by random connectivity between KCs and PNs. However, this hypothesis has been challenging to test, given the difficulty of mapping synaptic connections between large numbers of brain-spanning neurons. Here, we used a recent whole-brain electron microscopy volume of the adult fruit fly to map PN-to-KC connectivity at synaptic resolution. The PN-KC connectome revealed unexpected structure, with preponderantly food-responsive PN types converging at above-chance levels on downstream KCs. Axons of the overconvergent PN types tended to arborize near one another in the MB main calyx, making local KC dendrites more likely to receive input from those types. Overconvergent PN types preferentially co-arborize and connect with dendrites of αß and α'ß' KC subtypes. Computational simulation of the observed network showed degraded discrimination performance compared with a random network, except when all signal flowed through the overconvergent, primarily food-responsive PN types. Additional theory and experiment will be needed to fully characterize the impact of the observed non-random network structure on associative memory formation and recall.
Assuntos
Drosophila melanogaster , Corpos Pedunculados , Animais , Drosophila/fisiologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Olfato/fisiologiaRESUMO
Large scientific projects in genomics and astronomy are influential not because they answer any single question but because they enable investigation of continuously arising new questions from the same data-rich sources. Advances in automated mapping of the brain's synaptic connections (connectomics) suggest that the complicated circuits underlying brain function are ripe for analysis. We discuss benefits of mapping a mouse brain at the level of synapses.
Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , CamundongosRESUMO
Reconstruction and annotation of volume electron microscopy data sets of brain tissue is challenging but can reveal invaluable information about neuronal circuits. Significant progress has recently been made in automated neuron reconstruction as well as automated detection of synapses. However, methods for automating the morphological analysis of nanometer-resolution reconstructions are less established, despite the diversity of possible applications. Here, we introduce cellular morphology neural networks (CMNs), based on multi-view projections sampled from automatically reconstructed cellular fragments of arbitrary size and shape. Using unsupervised training, we infer morphology embeddings (Neuron2vec) of neuron reconstructions and train CMNs to identify glia cells in a supervised classification paradigm, which are then used to resolve neuron reconstruction errors. Finally, we demonstrate that CMNs can be used to identify subcellular compartments and the cell types of neuron reconstructions.
Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Neurônios/citologia , Sinapses , Algoritmos , Animais , Encéfalo/citologia , Conjuntos de Dados como Assunto , Estudos de Viabilidade , Masculino , Microscopia Eletrônica , PasseriformesRESUMO
Reconstruction of neural circuits from volume electron microscopy data requires the tracing of cells in their entirety, including all their neurites. Automated approaches have been developed for tracing, but their error rates are too high to generate reliable circuit diagrams without extensive human proofreading. We present flood-filling networks, a method for automated segmentation that, similar to most previous efforts, uses convolutional neural networks, but contains in addition a recurrent pathway that allows the iterative optimization and extension of individual neuronal processes. We used flood-filling networks to trace neurons in a dataset obtained by serial block-face electron microscopy of a zebra finch brain. Using our method, we achieved a mean error-free neurite path length of 1.1 mm, and we observed only four mergers in a test set with a path length of 97 mm. The performance of flood-filling networks was an order of magnitude better than that of previous approaches applied to this dataset, although with substantially increased computational costs.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Rede Nervosa/ultraestrutura , Neurônios/ultraestrutura , Algoritmos , Animais , Encéfalo/ultraestrutura , Drosophila/ultraestrutura , Tentilhões/anatomia & histologia , Imageamento Tridimensional/métodos , Aprendizado de Máquina , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Neuritos/ultraestruturaRESUMO
Comprehensive high-resolution structural maps are central to functional exploration and understanding in biology. For the nervous system, in which high resolution and large spatial extent are both needed, such maps are scarce as they challenge data acquisition and analysis capabilities. Here we present for the mouse inner plexiform layer--the main computational neuropil region in the mammalian retina--the dense reconstruction of 950 neurons and their mutual contacts. This was achieved by applying a combination of crowd-sourced manual annotation and machine-learning-based volume segmentation to serial block-face electron microscopy data. We characterize a new type of retinal bipolar interneuron and show that we can subdivide a known type based on connectivity. Circuit motifs that emerge from our data indicate a functional mechanism for a known cellular response in a ganglion cell that detects localized motion, and predict that another ganglion cell is motion sensitive.
Assuntos
Conectoma , Modelos Biológicos , Retina/citologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Células Amácrinas/citologia , Células Amácrinas/fisiologia , Animais , Comunicação Celular , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Neurópilo/fisiologia , Células Ganglionares da Retina/citologiaRESUMO
Connections between neurons can be found by checking whether synapses exist at points of contact, which in turn are determined by neural shapes. Finding these shapes is a special case of image segmentation, which is laborious for humans and would ideally be performed by computers. New metrics properly quantify the performance of a computer algorithm using its disagreement with 'true' segmentations of example images. New machine learning methods search for segmentation algorithms that minimize such metrics. These advances have reduced computer errors dramatically. It should now be faster for a human to correct the remaining errors than to segment an image manually. Further reductions in human effort are expected, and crucial for finding connectomes more complex than that of Caenorhabditis elegans.
Assuntos
Algoritmos , Inteligência Artificial , Processamento de Imagem Assistida por Computador/tendências , Nanotecnologia/tendências , Neurobiologia/tendências , Animais , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica/instrumentação , Microscopia Eletrônica/métodos , Microscopia Eletrônica/tendências , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Neurobiologia/instrumentação , Neurobiologia/métodosRESUMO
Many image segmentation algorithms first generate an affinity graph and then partition it. We present a machine learning approach to computing an affinity graph using a convolutional network (CN) trained using ground truth provided by human experts. The CN affinity graph can be paired with any standard partitioning algorithm and improves segmentation accuracy significantly compared to standard hand-designed affinity functions. We apply our algorithm to the challenging 3D segmentation problem of reconstructing neuronal processes from volumetric electron microscopy (EM) and show that we are able to learn a good affinity graph directly from the raw EM images. Further, we show that our affinity graph improves the segmentation accuracy of both simple and sophisticated graph partitioning algorithms. In contrast to previous work, we do not rely on prior knowledge in the form of hand-designed image features or image preprocessing. Thus, we expect our algorithm to generalize effectively to arbitrary image types.