Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0300171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701062

RESUMO

PURPOSE: To investigate the treatment efficacy of intra-arterial (IA) trastuzumab treatment using multiparametric magnetic resonance imaging (MRI) in a human breast cancer xenograft model. MATERIALS AND METHODS: Human breast cancer cells (BT474) were stereotaxically injected into the brains of nude mice to obtain a xenograft model. The mice were divided into four groups and subjected to different treatments (IA treatment [IA-T], intravenous treatment [IV-T], IA saline injection [IA-S], and the sham control group). MRI was performed before and at 7 and 14 d after treatment to assess the efficacy of the treatment. The tumor volume, apparent diffusion coefficient (ADC), and dynamic contrast-enhanced (DCE) MRI parameters (Ktrans, Kep, Ve, and Vp) were measured. RESULTS: Tumor volumes in the IA-T group at 14 d after treatment were significantly lower than those in the IV-T group (13.1 mm3 [interquartile range 8.48-16.05] vs. 25.69 mm3 [IQR 20.39-30.29], p = 0.005), control group (IA-S, 33.83 mm3 [IQR 32.00-36.30], p<0.01), and sham control (39.71 mm3 [IQR 26.60-48.26], p <0.001). The ADC value in the IA-T group was higher than that in the control groups (IA-T, 7.62 [IQR 7.23-8.20] vs. IA-S, 6.77 [IQR 6.48-6.87], p = 0.044 and vs. sham control, 6.89 [IQR 4.93-7.48], p = 0.004). Ktrans was significantly decreased following the treatment compared to that in the control groups (p = 0.002 and p<0.001 for vs. IA-S and sham control, respectively). Tumor growth was decreased in the IV-T group compared to that in the sham control group (25.69 mm3 [IQR 20.39-30.29] vs. 39.71 mm3 [IQR 26.60-48.26], p = 0.27); there was no significant change in the MRI parameters. CONCLUSION: IA treatment with trastuzumab potentially affects the early response to treatment, including decreased tumor growth and decrease of Ktrans, in a preclinical brain tumor model.


Assuntos
Neoplasias da Mama , Injeções Intra-Arteriais , Camundongos Nus , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto , Trastuzumab/administração & dosagem , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Animais , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Camundongos , Linhagem Celular Tumoral , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Carga Tumoral/efeitos dos fármacos , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/uso terapêutico , Camundongos Endogâmicos BALB C
2.
J Colloid Interface Sci ; 665: 188-203, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522159

RESUMO

Anti-tumor therapies reliant on reactive oxygen species (ROS) as primary therapeutic agents face challenges due to a limited oxygen substrate. Photodynamic therapy (PDT) is particularly hindered by inherent hypoxia, while chemodynamic therapy (CDT) encounters obstacles from insufficient endogenous hydrogen peroxide (H2O2) levels. In this study, we engineered biodegradable tumor microenvironment (TME)-activated hollow mesoporous MnO2-based nanotheranostic agents, designated as HAMnO2A. This construct entails loading artemisinin (ART) into the cavity and surface modification with a mussel-inspired polymer ligand, namely hyaluronic acid-linked poly(ethylene glycol)-diethylenetriamine-conjugated (3,4-dihydroxyphenyl) acetic acid, and the photosensitizer Chlorin e6 (mPEG-HA-Dien-(Dhpa/Ce6)), facilitating dual-modal imaging-guided PDT/CDT synergistic therapy. In vitro experimentation revealed that HAMnO2A exhibited ideal physiological stability and enhanced cellular uptake capability via CD44-mediated endocytosis. Additionally, it was demonstrated that accelerated endo-lysosomal escape through the pH-dependent protonation of Dien. Within the acidic and highly glutathione (GSH)-rich TME, the active component of HAMnO2A, MnO2, underwent decomposition, liberating oxygen and releasing both Mn2+ and ART. This process alleviates hypoxia within the tumor region and initiates a Fenton-like reaction through the combination of ART and Mn2+, thereby enhancing the effectiveness of PDT and CDT by generating increased singlet oxygen (1O2) and hydroxyl radicals (•OH). Moreover, the presence of Mn2+ ions enabled the activation of T1-weighted magnetic resonance imaging. In vivo findings further validated that HAMnO2A displayed meaningful tumor-targeting capabilities, prolonged circulation time in the bloodstream, and outstanding efficacy in restraining tumor growth while inducing minimal damage to normal tissues. Hence, this nanoplatform serves as an efficient all-in-one solution by facilitating the integration of multiple functions, ultimately enhancing the effectiveness of tumor theranostics.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Compostos de Manganês/farmacologia , Compostos de Manganês/química , Microambiente Tumoral , Nanomedicina Teranóstica/métodos , Peróxido de Hidrogênio/química , Óxidos/química , Fármacos Fotossensibilizantes/química , Neoplasias/tratamento farmacológico , Oxigênio , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Nanopartículas/química
3.
PLoS Comput Biol ; 20(3): e1011848, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489379

RESUMO

The recent advancements in large-scale activity imaging of neuronal ensembles offer valuable opportunities to comprehend the process involved in generating brain activity patterns and understanding how information is transmitted between neurons or neuronal ensembles. However, existing methodologies for extracting the underlying properties that generate overall dynamics are still limited. In this study, we applied previously unexplored methodologies to analyze time-lapse 3D imaging (4D imaging) data of head neurons of the nematode Caenorhabditis elegans. By combining time-delay embedding with the independent component analysis, we successfully decomposed whole-brain activities into a small number of component dynamics. Through the integration of results from multiple samples, we extracted common dynamics from neuronal activities that exhibit apparent divergence across different animals. Notably, while several components show common cooperativity across samples, some component pairs exhibited distinct relationships between individual samples. We further developed time series prediction models of synaptic communications. By combining dimension reduction using the general framework, gradient kernel dimension reduction, and probabilistic modeling, the overall relationships of neural activities were incorporated. By this approach, the stochastic but coordinated dynamics were reproduced in the simulated whole-brain neural network. We found that noise in the nervous system is crucial for generating realistic whole-brain dynamics. Furthermore, by evaluating synaptic interaction properties in the models, strong interactions within the core neural circuit, variable sensory transmission and importance of gap junctions were inferred. Virtual optogenetics can be also performed using the model. These analyses provide a solid foundation for understanding information flow in real neural networks.


Assuntos
Fenômenos Fisiológicos do Sistema Nervoso , Neurônios , Animais , Neurônios/fisiologia , Encéfalo/diagnóstico por imagem , Junções Comunicantes/fisiologia , Caenorhabditis elegans/fisiologia , Neuroimagem , Modelos Neurológicos
4.
ACS Appl Mater Interfaces ; 15(30): 36013-36024, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37478563

RESUMO

Tumor phototheranostics is usually compromised by the hypoxic tumor microenvironment and poor theranostic efficiency. The interplay between organic polymers and inorganic nanoparticles in novel nanocomposites has proven to be advantageous, overcoming previous limitations and harnessing their full potential through activation via the tumor microenvironment. This study successfully fabricated hypoxia-activated nanocolloids called HOISNDs through a process of self-assembly involving superparamagnetic iron oxide nanoparticles (SPIONs) and an organic polymer ligand called tetrakis(4-carboxyphenyl) porphyrin (TCPP)-engineered organic polymer ligand [methoxy poly(ethyleneglycol)-block-poly(dopamine-ethylenediamine-conjugated-4-nitrobenzyl chloroformate)-l-glutamate, mPEG-b-P(Dopa-EDA-co-NBCF)LG-TCPP)]. The SPIONs act as an oxygen generator to overcome the challenges posed by hypoxic tumors and enable the use of hypoxic-activatable MR/fluorescence dual-modal imaging-guided photodynamic therapy (PDT). The colloid stability of these HOISNDs proved to be exceptional in diverse biomimetic environments. Furthermore, they not only augment T2-weighted contrast capability as an MRI contrast agent but also function as an oxygen-producing device to amplify the generation and release of reactive oxygen species (ROS). The HOISNDs can significantly target to tumor sites through the enhanced permeability and retention (EPR) effect with prolonged blood circulation time and subsequently are effectively endocytosed into a hypoxic intracellular environment that "turn on" the imaging function and photodynamic activity. Moreover, HOISNDs possess the ability to effectively decompose naturally occurring H2O2 into oxygen (O2) within the tumor utilizing the Fenton reaction. This method can mitigate the impact of hypoxia on oxygen-dependent PDT. The outcomes of in vivo diagnostic and therapeutic evaluations indicated that HOISNDs are a highly promising tool for dual-model imaging-guided cancer theranosis by ameliorating hypoxic conditions and augmenting PDT efficiency.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Oxigênio , Fotoquimioterapia/métodos , Peróxido de Hidrogênio , Ligantes , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Polímeros , Imageamento por Ressonância Magnética , Hipóxia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Colloids Surf B Biointerfaces ; 228: 113395, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327654

RESUMO

In this study, unique hypoxia-activated hyaluronic acid nanogels (HANGs) were reported for CD44-targeted delivery of photosensitizers (chlorin e6, Ce6) for diagnostic imaging and photodynamic therapy (PDT) of cancers. Through the use of a hypoxia-responsive cross-linker (AZO-CDI), the HANGs were prepared by chemically cross-linking primary amine groups-functionalized hyaluronic acid (HA). Under normoxic condition, fluorescence of Ce6 conjugated on the HANGs was highly quenched, and level of reactive oxygen species (ROS) generated from the HANGs was rather low after laser irradiation. However, under hypoxic condition, the HANGs underwent rapid disassociation, and fluorescence of Ce6 conjugated on the HANGs was recovered, triggering high-level singlet oxygen generation after laser irradiation. Due to the presence of HA, the HANGs showed much higher cellular uptake by CD44-positive cancer cells (A549 cells) than that by CD44-negative cancer cells (HepG2 cells). In addition, the HANGs could generate higher level of ROS in A549 cells because of improved cancer cell uptake. This excellent tumor-targeting and singlet oxygen-generating ability of the HANGs was favorable to hypoxia-activated PDT of CD44-positive cancers with significant inhibition of tumor growth within the whole treatment period. Taken together, the HANGs are safe and effective tools in treating CD44-positive cancers.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Fotoquimioterapia/métodos , Nanogéis , Ácido Hialurônico/farmacologia , Espécies Reativas de Oxigênio , Oxigênio Singlete , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Linhagem Celular Tumoral , Receptores de Hialuronatos
6.
Colloids Surf B Biointerfaces ; 217: 112638, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35772354

RESUMO

Co-delivery of photosensitizers (PSs) and protein drugs represents great potentiality for enhancing the efficiency of synergistic cancer therapy. However, the intricate tumor-microenvironment and the lack of nanoplatforms to co-deliver both into cancer cells and activate their functions significantly hinder the clinical translation of this combined approach for cancer treatment. Herein, a chlorine e6 (Ce6)-functionalized and pH-responsive dynamically cross-linked nanogel (Ce6@NG) is fabricated by formation of benzoic imine linkages between Ce6-modified methoxy poly (ethyleneglycol)-block-poly (diethylenetriamine)-L-glutamate-Ce6 [MPEG-b-P(Deta)LG-Ce6] and terephthalaldehyde as cross-linkers for effective intracellular co-delivery of Ce6 and cytochrome c (CC), which could form a novel combination therapy system (CC/Ce6@NGs). The pH-sensitive benzoic imine bonds in the CC/Ce6@NGs endow them with excellent systemic stability under normal physiological environment while this nanosystem can be further cationized to enhance cell uptake in acidic extracellular environment. Upon cellular internalization, CC/Ce6@NGs can rapidly escape from the endo/lysosomal compartments and subsequently activate Ce6 to generate cytotoxic singlet oxygen upon laser irradiation and release of CC to induce programmed cell death by complete cleavage of benzoic imines at more acidic intracellular environments. Importantly, the catalase-like activity of CC can decompose H2O2 to produce O2 for hypoxia alleviation and improvement of the photodynamic therapy (PDT) of cancer. Moreover, this enhanced synergistic anticancer activity is confirmed both in vitro and in vivo. In view of the versatile chemical conjugation, this research offers a promising and smart nanosystem for intracellular co-delivery of PSs and therapeutic proteins.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Linhagem Celular Tumoral , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Lisossomos , Nanogéis , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia
7.
Commun Biol ; 5(1): 30, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017611

RESUMO

Previously, we reported that DAF-2c, an axonal insulin receptor isoform in Caenorhabditis elegans, acts in the ASER gustatory neuron to regulate taste avoidance learning, a process in which worms learn to avoid salt concentrations experienced during starvation. Here, we show that secretion of INS-1, an insulin-like peptide, after starvation conditioning is sufficient to drive taste avoidance via DAF-2c signaling. Starvation conditioning enhances the salt-triggered activity of AIA neurons, the main sites of INS-1 release, which potentially promotes feedback signaling to ASER to maintain DAF-2c activity during taste avoidance. Genetic studies suggest that DAF-2c-Akt signaling promotes high-salt avoidance via a decrease in PLCß activity. On the other hand, the DAF-2c pathway promotes low-salt avoidance via PLCε and putative Akt phosphorylation sites on PLCε are essential for taste avoidance. Our findings imply that animals disperse from the location at which they experience starvation by controlling distinct PLC isozymes via DAF-2c.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Receptor de Insulina , Paladar , Fosfolipases Tipo C , Animais , Aprendizagem da Esquiva , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Insulina/genética , Insulina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais/genética , Cloreto de Sódio/metabolismo , Inanição , Paladar/genética , Paladar/fisiologia , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
8.
Biomacromolecules ; 22(8): 3590-3600, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34286578

RESUMO

One of the biggest challenges of the protein delivery system is to realize stable and high protein encapsulation efficiency in blood circulation and rapid release of protein in the targeted tumor cells. To overcome these hurdles, we fabricated enzyme-responsive photo-cross-linked nanogels (EPNGs) through UV-triggered chemical cross-linking of cinnamyloxy groups in the side chain of PEGylation hyaluronic acid (HA) for CD44-targeted transport of cytochrome c (CC). The EPNGs showed high loading efficiency and excellent stability in different biological media. Notably, CC leakage effectively suppressed under physiological conditions but accelerated release in the presence of hyaluronidase, an overexpressed enzyme in tumor cells. Moreover, thiazolylblue tetrazolium bromide (MTT) results indicated that the vacant EPNGs showed excellent nontoxicity, while CC-loaded EPNGs exhibited higher killing efficiency to CD44-positive A549 cells than to CD44-negative HepG2 cells and free CC. Confocal images confirmed that CC-loaded EPNGs could effectively be internalized by CD44-mediated endocytosis pathway and rapidly escape from the endo/lysosomal compartment. Human lung tumor-bearing mice imaging assays further revealed that CC-loaded EPNGs actively target tumor locations. Remarkably, CC-loaded EPNGs also exhibited enhanced antitumor activity with negligible systemic toxicity. These results implied that these EPNGs have appeared as stable and promising nanocarriers for tumor-targeting protein delivery.


Assuntos
Nanopartículas , Células A549 , Animais , Linhagem Celular Tumoral , Humanos , Ácido Hialurônico , Camundongos , Nanogéis
9.
Mater Sci Eng C Mater Biol Appl ; 118: 111449, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255037

RESUMO

The rapid developments of nanocarriers based on quantum dots (QDs) have been confirmed to show substantial promise for drug delivery and bioimaging. However, optimal QDs-based nanocarriers still need to have their controlled behavior in vitro and in vivo and decrease heavy metal-associated cytotoxicity. Herein, a pH-activated charge convertible QD-based nanocarrier was fabricated by capping multifunctional polypeptide ligands (mPEG-block-poly(ethylenediamine-dihydrolipoic acid-2,3-dimethylmaleic anhydride)-L-glutamate, PEG-P(ED-DLA-DMA)LG) onto the surface of core/multishell CdSe@ZnS/ZnS QD by means of a ligand exchange strategy, followed by uploading of cytochrome C (CC) (CC-loaded QD-PEG-P(ED-DLA-DMA)LG) via electrostatic interactions, in which QDs that were water-soluble and protein-loading were perfectly integrated. That is, the CC-loaded QD-PEG-P(ED-DLA-DMA)LG inherited excellent fluorescence properties from CdSe@ZnS/ZnS QD for real-time imaging, as well as tumor-microenvironment sensitivities from PEG-P(ED-DLA-DMA)LG for enhanced cellular uptake and CC release. Experimental results verified that the QD-PEG-P(ED-DLA-DMA)LG showed enhanced internalization, rapid endo/lysosomal escape, and supplied legible real-time imaging for lung carcinoma cells. Furthermore, pH-triggered charge-convertible ability enabled the QD-PEG-P(ED-DLA-DMA)LG-CC to effectively kill cancer cells better than did the control groups. Hence, constructing smart nanocomposites by facile ligand-exchange strategy is beneficial to QD-based nanocarrier for tumor-targeting cancer therapy.


Assuntos
Neoplasias , Pontos Quânticos , Linhagem Celular Tumoral , Citocromos c , Sistemas de Liberação de Medicamentos , Humanos , Concentração de Íons de Hidrogênio
10.
Mater Sci Eng C Mater Biol Appl ; 114: 111069, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32994015

RESUMO

To begin with, it is important to note that biodegradable polypeptides have been extensively applied as drug delivery carriers due to their excellent bioavailability, neglectful toxicity, good encapsulation and controlled release. Thus, a biodegradable and hypoxia-responsive polypeptide is a benefit when synthesized for the intracellular delivery of cytochrome c (CC). In its most positive context, this amphiphilic polypeptide can self-assemble into core/shell-structured micelles and encapsulate CC in their hydrophobic cores. Owing to the presence of hypoxia-responsive chemical bonds, the CC-loaded polymeric micelles (PMs) can potentially target hypoxic tissues (such as tumors) and release the proteins inside the cancer cells. For this reason, these PMs exhibit high protein loading content and efficiency and remain stable in several different kinds of cell culture media under normoxic condition. Moreover, the confocal microscopy indicates that CC-loaded PMs could be effectively uptaken by cancer cells and accelerate endo/lysosomal escape. Most importantly, the CC-loaded PMs show great killing effect to HepG2 liver cancer cells under hypoxic condition, which makes this nano-platform a promising candidate for use with efficient cancer therapy.


Assuntos
Micelas , Neoplasias , Linhagem Celular Tumoral , Citocromos c , Preparações de Ação Retardada , Doxorrubicina , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Hipóxia , Peptídeos
11.
J Control Release ; 327: 129-139, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32771476

RESUMO

Multifunctional nanosystems that can transport therapeutic and diagnostic agents into tumor sites and activate their respective functions via tumor-microenvironment recognition are highly desirable for clinical applications. We fabricated pH and redox dual-activatable self-assembled nanotheranostics (named as DA-SNs) via coordination-driven self-assembly of chlorin e6 (Ce6) disulfide-linked pH sensitive polymer ligand, poly (isobutylene-alt-maleic anhydride-graft-methoxy-poly (ethyleneglycol)-graft-imidazole-graft-Cystamine-Ce6) [PIMA-mPEG-API-SS-Ce6], and gadolinium ions (Gd3+). DA-SNs exhibited uniform particle size of ~48 nm, excellent stability, and inherent biosafety. Negatively charged DA-SNs could prolong blood circulation time (t1/2 = 2.91 h) and improve tumor accumulation. Moreover, DA-SNs could undergo surface charge switch from negative charge to positive one in a slightly acidic tumor extracellular environment (pH 6.8), thus enhancing cellular uptake. After entering tumor cells, fluorescence, photodynamic therapeutic activity, and T1MR contrast from DA-SNs could be activated within this intracellular environment with lowered pH and high level of GSH. Importantly, human tumors implanted in mice could be successfully visualized via distinct pH and redox dual-sensitive T1MR contrast and fluorescence imaging, indicating that DA-SNs could serve as a dual-modal MR/fluorescence imaging probe for tumor-targeting diagnosis. In addition, DA-SNs exhibited superior photodynamic therapeutic efficiency with negligible side effects. Therefore, this DA-SN shows great promise for synergistic photodynamic therapy and diagnostic imaging.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Porfirinas/uso terapêutico , Nanomedicina Teranóstica , Microambiente Tumoral
12.
BMC Biol ; 18(1): 30, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32188430

RESUMO

BACKGROUND: Annotation of cell identity is an essential process in neuroscience that allows comparison of cells, including that of neural activities across different animals. In Caenorhabditis elegans, although unique identities have been assigned to all neurons, the number of annotatable neurons in an intact animal has been limited due to the lack of quantitative information on the location and identity of neurons. RESULTS: Here, we present a dataset that facilitates the annotation of neuronal identities, and demonstrate its application in a comprehensive analysis of whole-brain imaging. We systematically identified neurons in the head region of 311 adult worms using 35 cell-specific promoters and created a dataset of the expression patterns and the positions of the neurons. We found large positional variations that illustrated the difficulty of the annotation task. We investigated multiple combinations of cell-specific promoters driving distinct fluorescence and generated optimal strains for the annotation of most head neurons in an animal. We also developed an automatic annotation method with human interaction functionality that facilitates annotations needed for whole-brain imaging. CONCLUSION: Our neuron ID dataset and optimal fluorescent strains enable the annotation of most neurons in the head region of adult C. elegans, both in full-automated fashion and a semi-automated version that includes human interaction functionalities. Our method can potentially be applied to model species used in research other than C. elegans, where the number of available cell-type-specific promoters and their variety will be an important consideration.


Assuntos
Encéfalo/fisiologia , Caenorhabditis elegans/fisiologia , Neurônios/fisiologia , Animais , Conjuntos de Dados como Assunto
13.
Biomaterials ; 230: 119600, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31727420

RESUMO

Gd3+-based contrast agents monopolize in the clinical MR imaging-based diagnosis of hepatic tumors, however, the inherent toxicity by the released Gd3+-ions triggered an urgent demand for safer alternatives. Here, we demonstrate hollow manganese silicate nanoparticles (HMS), which exert burst-release of Mn2+-ions by switching to physiological acidic condition, exhibiting high effectiveness in hepatic tumor characterization as liver-specific MR contrast agent through the in-depth in vivo MR imaging study and immunohistochemical investigations with three hepatic tumor models (e.g., hepatocellular carcinoma, neuroendocrine carcinoma, adenocarcinoma). Their characteristic time-sequential enhancement patterns in HMS-enhanced MR imaging with improved conspicuity reflect their biological features such as vascularity, cellularity, mitochondrial activity and hepatocellular specificity, and thus allow the disease-specific characterization of various hepatic tumors. HMS-enhanced MR imaging with necrotic hepatocellular carcinoma model suggested the good correlation of the extent of tumor necrosis with residual mitochondrial activity. Such multi-responsive spatio-biological distribution and function of HMS resulting in time-dependent bioimaging coupled with low systemic toxicity sets the clinical potential to accurate diagnosis and therapeutic response in various hepatic tumors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Imageamento por Ressonância Magnética , Nanopartículas , Carcinoma Hepatocelular/diagnóstico por imagem , Meios de Contraste , Humanos , Íons , Fígado , Neoplasias Hepáticas/diagnóstico por imagem , Manganês , Silicatos
14.
Carbohydr Polym ; 224: 115174, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472852

RESUMO

The use of multifunctional quantum dots (QDs) as smart nanocarriers has exhibited substantial promise for imaging, targeting and therapeutic functionalities. Here, we describe the synthesis of green-light emitting CdZnSeS/ZnS quantum dots (QDs) combined with redox-sensitive hyaluronic acid ligand (hyaluronic acid-disulfide-linked poly(ethylene glycol)-histamine-diethylenetriamine, HA-PEG(SS)-His-Diet) for the targeted intracellular delivery of protein drugs. The generation of HA-PEG(SS)-His-Diet-QD exhibits monodispersity with high quantum yield, negligible cytotoxicity and long-term stability at pH 7.4 and 5.5. These HA-PEG(SS)-His-Diet-QDs could effectively immobilize cytochrome C (CC) with high loading efficiency, enable target of CD44-overexpressing MCF-7 human breast tumor cells, and accelerate protein release under high intracellular glutathione concentration condition. The HA-PEG(SS)-His-Diet-QD act as a promising nanocarrier for enhanced endo/lysosomal escape, targeted delivery of proteins and real-time cellular imaging. In addition, CC-loaded-HA-PEG(SS)-His-Diet-QD could effectively induce the CD44-positive cancer cells apoptosis in vitro. Ultimately, this redox-sensitive and fluorescent QD-based nanocarrier has shown major promise for targeted intracellular protein transport.


Assuntos
Citocromos c/química , Citocromos c/metabolismo , Portadores de Fármacos/química , Ácido Hialurônico/química , Espaço Intracelular/metabolismo , Imagem Óptica/métodos , Pontos Quânticos/química , Células A549 , Carbocianinas/química , Humanos , Células MCF-7 , Fatores de Tempo
15.
Proc Natl Acad Sci U S A ; 116(37): 18673-18683, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31455735

RESUMO

Animals demonstrate flexible behaviors through associative learning based on their experiences. Deciphering the neural mechanisms for sensing and integrating multiple types of sensory information is critical for understanding such behavioral controls. The soil nematode Caenorhabditis elegans avoids salt concentrations it has previously experienced under starvation conditions. Here, we identify a pair of sensory neurons, the ASG neuron pair, which in cooperation with the ASER salt-sensing neuron generate starvation-dependent salt avoidance. Animals whose sensory input is restricted to only ASER failed to show learned avoidance due to inappropriately directed navigation behaviors. However, their navigation through a salt concentration gradient was improved by allowing sensory inputs to ASG in addition to ASER. Detailed behavioral analyses of these animals revealed that input from ASG neurons is required not only for controlling the frequency of initiating a set of sharp turns (called pirouettes) based on detected ambient salt concentrations but also adjusting the migration direction during pirouettes. Optogenetic activation of ASER by ChR2 induced turning behaviors in a salt concentration-dependent manner where presence of intact ASG was important for the starvation-dependent responses. Calcium imaging of the activity of ASG neurons in freely moving worms revealed that ASG is activated upon turning behavior. Our results indicate that ASG neurons cooperate with the ASER neuron to generate destination-directed reorientation in starvation-associated salt concentration avoidance.


Assuntos
Caenorhabditis elegans/fisiologia , Quimiotaxia/fisiologia , Privação de Alimentos/fisiologia , Células Receptoras Sensoriais/fisiologia , Solo/química , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Channelrhodopsins/metabolismo , Optogenética , Cloreto de Sódio/metabolismo
16.
J Control Release ; 301: 157-165, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30905667

RESUMO

Nanosized self-assemblies built from inorganic nanoparticles and polymer ligands have the potential to generate personalized theranostics systems for diagnostic imaging and cancer therapy. However, most of the theranostics systems suffer from poor targeting activity, insensitive diagnosis and drug leakage, leading to poor treatment results. In this study, a hierarchical tumor acidity-responsive magnetic nanobomb (termed HTAMN) was developed for photodynamic therapy and diagnostic imaging. The HTAMNs were formed through the self-assembly of chlorin e6 (Ce6)-functionalized polypeptide ligand, methoxy poly (ethyleneglycol)-block-poly (dopamine-ethylenediamine-2,3-dimethylmaleic anhydride)-L-glutamate-Ce6 [mPEG-b-P (Dopa-Ethy-DMMA)LG-Ce6] and superparamagnetic iron oxide nanoparticles (SPIONs). Negatively charged HTAMNs circulate in the blood for prolonged periods and promote tumor retention by passive targeting to the tumor. Once the HTAMNs arrive at the tumor location, the acidic extracellular tumor environment reverses the surface charge of the HTAMNs, resulting in tumor accumulation and cellular uptake. Moreover, in response to the more acidic environment inside cells, the photosensitizers are activated resulted in enhanced diagnostic imaging and cancer treatment. The in vitro and in vivo results indicate the effective tumor accumulation, internalization, diagnostic sensitivity and superior photodynamic therapy effect of the HTAMNs. Therefore, designing smart HTAMNs can promote the rapid development of cancer theranostics for clinical implementation.


Assuntos
Compostos Férricos/administração & dosagem , Nanopartículas/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Animais , Sobrevivência Celular/efeitos dos fármacos , Clorofilídeos , Diagnóstico por Imagem , Compostos Férricos/química , Compostos Férricos/farmacocinética , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Camundongos Nus , Nanopartículas/química , Neoplasias/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Polímeros/administração & dosagem , Polímeros/química , Polímeros/farmacocinética , Porfirinas/química , Porfirinas/farmacocinética , Nanomedicina Teranóstica
17.
Exp Mol Med ; 50(10): 1-16, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327455

RESUMO

Germline BRCA1 mutations predispose women to breast and ovarian cancer. BRCA1, a large protein with multiple functional domains, interacts with numerous proteins involved in many important biological processes and pathways. However, to date, the role of BRCA1 interactions at specific stages in the progression of mammary tumors, particularly in relation to cell cycle regulation, remains elusive. Here, we demonstrate that BRCA1 interacts with cyclin B1, a crucial cell cycle regulator, and that their interaction is modulated by DNA damage and cell cycle phase. In DNA-damaged mitotic cells, BRCA1 inhibits cytoplasmic transportation of cyclin B1, which prevents cyclin B1 degradation. Moreover, restoration of cyclin B1 in BRCA1-deficient cells reduced cell survival in association with induction of apoptosis. We further demonstrate that treatment of Brca1-mutant mammary tumors with vinblastine, which induces cyclin B1, significantly reduced tumor progression. In addition, a correlation analysis of vinblastine responses and gene expression profiles in tumors at baseline revealed 113 genes that were differentially expressed between tumors that did and did not respond to vinblastine treatment. Further analyses of protein-protein interaction networks revealed gene clusters related to vinblastine resistance, including nucleotide excision repair, epigenetic regulation, and the messenger RNA surveillance pathway. These findings enhance our understanding of how loss of BRCA1 disrupts mitosis regulation through dysregulation of cyclin B1 and provide evidence suggesting that targeting cyclin B1 may be useful in BRCA1-associated breast cancer therapy.


Assuntos
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclina B1/metabolismo , Regulação Neoplásica da Expressão Gênica , Animais , Biomarcadores Tumorais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Knockout , Estabilidade Proteica , Transporte Proteico , Vimblastina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Bioconjug Chem ; 29(7): 2426-2435, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29856914

RESUMO

Currently, most MRI probes available for clinical use contain gadolinium, which is a high-risk paramagnetic metal that can cause severe side effects (e.g., nephrogenic systemic fibrosis). To limit such side effects and improve diagnostic efficacy, we developed a novel biocompatible MRI contrast agent using glucose, glycine, and paramagnetic iron ion. Glucose and glycine were polymerized into melanoidin by the nonenzymatic Maillard reaction, and Fe3+ was chelated stably with the melanoidin during polymerization. The Fe3+-melanoidin chelate had biocompatibility, biodegradability, and unique contrast effects on both T1- and T2-weighted MRI, depending on the pH and oxidative environments. The administration of the Fe3+-melanoidin chelate to a mouse model of liver cancer showed highly enhanced liver-to-tumor contrasts on both T1- and T2-weighted MRI.


Assuntos
Meios de Contraste/química , Ferro/química , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Animais , Materiais Biocompatíveis/química , Quelantes de Ferro , Camundongos , Polímeros/síntese química , Polímeros/química
19.
Mol Microbiol ; 107(6): 718-733, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29363196

RESUMO

The rare actinomycete Actinoplanes missouriensis forms terminal sporangia containing a few hundred flagellated spores, which can swim in aquatic environments after release from sporangium. However, gene regulation for its characteristic morphological development is largely unknown. Here, we report the functional analysis of an orphan response regulator, TcrA, which is encoded next to the chemotaxis-flagellar gene cluster. The tcrA null (ΔtcrA) mutant formed sporangium, in which sporulation proceeded. However, many distorted spores were produced and some spores ectopically germinated in the mutant sporangia. In addition, spores were hardly released from the mutant sporangia. A comparative RNA-Seq analysis between the wild-type and ΔtcrA strains showed that TcrA upregulated the transcription of more than 263 genes, which were integrated into 185 transcriptional units. In silico searches identified a 21-bp direct repeat sequence, 5'-nnGCA(A/C)CCG-n4 -GCA(A/C)CCGn-3', as the TcrA box, which was confirmed by electrophoretic mobility shift assays. Finally, we identified 34 transcriptional units as the TcrA regulon. TcrA seems to regulate a few hundred genes through the transcriptional activation of three FliA-family sigma factor genes besides its own regulon. We concluded that TcrA is a global transcriptional activator that controls many aspects of sporangium formation, including flagellar biogenesis, spore dormancy and sporangium dehiscence.


Assuntos
Actinobacteria/fisiologia , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulon , Esporângios/genética , Esporângios/crescimento & desenvolvimento , Esporângios/metabolismo , Esporângios/fisiologia , Esporos Bacterianos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
J Mater Chem B ; 6(35): 5562-5569, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254966

RESUMO

Multifunctional nanoplatforms that can combine diagnostic functions and therapeutic capabilities are highly required for the construction of novel cancer diagnosis-therapy integrative systems. In this work, we developed multifunctional and tumor redox-responsive magnetic nanoclusters (RMNs) by the self-assembly of iron oxide nanoparticles with a chlorin e6 (Ce6)-disulfide-linked polymer ligand. The core of RMNs could enhance the T2-weighted MR contrast capability, and the surface ligand could improve the system stability and load Ce6. In addition, the obtained RMNs also exhibited excellent biocompatibility and higher cytotoxicity upon near infrared (NIR)-irradiation. These RMNs with a size of ∼90 nm can effectively facilitate their accumulation in tumor sites through the enhanced permeability and retention (EPR) effect and subsequently are endocytosed into a highly reductive intracellular environment that activates fluorescence and photodynamic therapeutic antitumor activity. Furthermore, the in vivo imaging and therapy results not only confirmed that RMNs can as bimodal imaging probes for the early-stage diagnosis of cancer but also demonstrated the superior photodynamic therapeutic efficiency of RMNs in suppressing tumor growth. These results indicated that RMNs show great potential for simultaneous diagnostic imaging and photodynamic therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA