Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
NAR Cancer ; 3(3): zcab035, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34514415

RESUMO

Chromosome 11q13-14 amplification is a defining feature of high-risk hormone receptor-positive (HR+) breast cancer; however, the mechanism(s) by which this amplicon contributes to breast tumorigenesis remains unclear. In the current study, proteogenomic analyses of >3000 breast tumors from the TCGA, METABRIC and CPTAC studies demonstrated that carnitine palmitoyltransferase 1A (CPT1A), which is localized to this amplicon, is overexpressed at the mRNA and protein level in aggressive luminal tumors, strongly associated with indicators of tumor proliferation and a predictor of poor prognosis. In vitro genetic studies demonstrated that CPT1A is required for and can promote luminal breast cancer proliferation, survival, as well as colony and mammosphere formation. Since CPT1A is the rate-limiting enzyme during fatty acid oxidation (FAO), our data indicate that FAO may be essential for these tumors. Pharmacologic inhibition of FAO prevented in vitro and in vivo tumor growth and cell proliferation as well as promoted apoptosis in luminal breast cancer cells and orthotopic xenograft tumor models. Collectively, our data establish an oncogenic role for CPT1A and FAO in HR+ luminal tumors and provide preclinical evidence and rationale supporting further investigation of FAO as a potential therapeutic opportunity for the treatment of HR+ breast cancer.

2.
Hepatol Commun ; 3(9): 1258-1270, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31497746

RESUMO

Oncoprotein staphylococcal nuclease and tudor domain containing 1 (SND1) regulates gene expression at a posttranscriptional level in multiple cancers, including hepatocellular carcinoma (HCC). Staphylococcal nuclease (SN) domains of SND1 function as a ribonuclease (RNase), and the tudor domain facilitates protein-oligonucleotide interaction. In the present study, we aimed to identify RNA interactome of SND1 to obtain enhanced insights into gene regulation by SND1. RNA interactome was identified by immunoprecipitation (IP) of RNA using anti-SND1 antibody from human HCC cells followed by RNA immunoprecipitation sequencing (RIP-Seq). Among RNA species that showed more than 10-fold enrichment over the control, we focused on the tumor suppressor protein tyrosine phosphatase nonreceptor type 23 (PTPN23) because its regulation by SND1 and its role in HCC are not known. PTPN23 levels were down-regulated in human HCC cells versus normal hepatocytes and in human HCC tissues versus normal adjacent liver, as revealed by immunohistochemistry. In human HCC cells, knocking down SND1 increased and overexpression of SND1 decreased PTPN23 protein. RNA binding and degradation assays revealed that SND1 binds to and degrades the 3'-untranslated region (UTR) of PTPN23 messenger RNA (mRNA). Tetracycline-inducible PTPN23 overexpression in human HCC cells resulted in significant inhibition in proliferation, migration, and invasion and in vivo tumorigenesis. PTPN23 induction caused inhibition in activation of tyrosine-protein kinase Met (c-Met), epidermal growth factor receptor (EGFR), Src, and focal adhesion kinase (FAK), suggesting that, as a putative phosphatase, PTPN23 inhibits activation of these oncogenic kinases. Conclusion: PTPN23 is a novel target of SND1, and our findings identify PTPN23 as a unique tumor suppressor for HCC. PTPN23 might function as a homeostatic regulator of multiple kinases, restraining their activation.

3.
Cancer Res ; 78(22): 6436-6446, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30181179

RESUMO

Chronic inflammation is a known hallmark of cancer and is central to the onset and progression of hepatocellular carcinoma (HCC). Hepatic macrophages play a critical role in the inflammatory process leading to HCC. The oncogene Astrocyte elevated gene-1 (AEG-1) regulates NFκB activation, and germline knockout of AEG-1 in mice (AEG-1-/-) results in resistance to inflammation and experimental HCC. In this study, we developed conditional hepatocyte- and myeloid cell-specific AEG-1-/- mice (AEG-1ΔHEP and AEG-1ΔMAC, respectively) and induced HCC by treatment with N-nitrosodiethylamine (DEN) and phenobarbital (PB). AEG-1ΔHEP mice exhibited a significant reduction in disease severity compared with control littermates, while AEG-1ΔMAC mice were profoundly resistant. In vitro, AEG-1-/- hepatocytes exhibited increased sensitivity to stress and senescence. Notably, AEG-1-/- macrophages were resistant to either M1 or M2 differentiation with significant inhibition in migration, endothelial adhesion, and efferocytosis activity, indicating that AEG-1 ablation renders macrophages functionally anergic. These results unravel a central role of AEG-1 in regulating macrophage activation and indicate that AEG-1 is required in both tumor cells and tumor microenvironment to stimulate hepatocarcinogenesis.Significance: These findings distinguish a novel role of macrophage-derived oncogene AEG-1 from hepatocellular AEG-1 in promoting inflammation and driving tumorigenesis. Cancer Res; 78(22); 6436-46. ©2018 AACR.


Assuntos
Carcinoma Hepatocelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimiotaxia , Dietilnitrosamina , Hepatócitos/citologia , Hepatócitos/metabolismo , Inflamação , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fenobarbital , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA , Fatores de Risco , Microambiente Tumoral
4.
Cancer Res ; 78(17): 4878-4890, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29986996

RESUMO

The cell of origin of colon cancer is typically thought to be the resident somatic stem cells, which are immortal and escape the continual cellular turnover characteristic of the intestinal epithelium. However, recent studies have identified certain conditions in which differentiated cells can acquire stem-like properties and give rise to tumors. Defining the origins of tumors will inform cancer prevention efforts as well as cancer therapies, as cancers with distinct origins often respond differently to treatments. We report here a new condition in which tumors arise from the differentiated intestinal epithelium. Inactivation of the differentiation-promoting transcription factor SMAD4 in the intestinal epithelium was surprisingly well tolerated in the short term. However, after several months, adenomas developed with characteristics of activated WNT signaling. Simultaneous loss of SMAD4 and activation of the WNT pathway led to dedifferentiation and rapid adenoma formation in differentiated tissue. Transcriptional profiling revealed acquisition of stem cell characteristics, and colabeling indicated that cells expressing differentiated enterocyte markers entered the cell cycle and reexpressed stem cell genes upon simultaneous loss of SMAD4 and activation of the WNT pathway. These results indicate that SMAD4 functions to maintain differentiated enterocytes in the presence of oncogenic WNT signaling, thus preventing dedifferentiation and tumor formation in the differentiated intestinal epithelium.Significance: This work identifies a mechanism through which differentiated cells prevent tumor formation by suppressing oncogenic plasticity. Cancer Res; 78(17); 4878-90. ©2018 AACR.


Assuntos
Adenoma/genética , Diferenciação Celular/genética , Neoplasias do Colo/genética , Proteína Smad4/genética , Adenoma/patologia , Animais , Carcinogênese/genética , Desdiferenciação Celular/genética , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Enterócitos/metabolismo , Enterócitos/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Via de Sinalização Wnt/genética
5.
Cancer Res ; 77(15): 4014-4025, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28619711

RESUMO

Activation of IGF signaling is a major oncogenic event in diverse cancers, including hepatocellular carcinoma (HCC). In this setting, the insulin-like growth factor binding protein IGFBP7 inhibits IGF signaling by binding the IGF1 receptor (IGF1R), functioning as a candidate tumor suppressor. IGFBP7 abrogates tumors by inhibiting angiogenesis and inducing cancer-specific senescence and apoptosis. Here, we report that Igfbp7-deficient mice exhibit constitutively active IGF signaling, presenting with proinflammatory and immunosuppressive microenvironments and spontaneous liver and lung tumors occurring with increased incidence in carcinogen-treated subjects. Igfbp7 deletion increased proliferation and decreased senescence of hepatocytes and mouse embryonic fibroblasts, effects that were blocked by treatment with IGF1 receptor inhibitor. Significant inhibition of genes regulating immune surveillance was observed in Igfbp7-/- murine livers, which was associated with a marked inhibition in antigen cross-presentation by Igfbp7-/- dendritic cells. Conversely, IGFBP7 overexpression inhibited growth of HCC cells in syngeneic immunocompetent mice. Depletion of CD4+ or CD8+ T lymphocytes abolished this growth inhibition, identifying it as an immune-mediated response. Our findings define an immune component of the pleiotropic mechanisms through which IGFBP7 suppresses HCC. Furthermore, they offer a genetically based preclinical proof of concept for IGFBP7 as a therapeutic target for immune management of HCC. Cancer Res; 77(15); 4014-25. ©2017 AACR.


Assuntos
Carcinoma Hepatocelular/patologia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/deficiência , Neoplasias Hepáticas/patologia , Animais , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Imuno-Histoquímica , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Reação em Cadeia da Polimerase em Tempo Real
6.
Cancer Res ; 77(12): 3306-3316, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28428278

RESUMO

SND1, a subunit of the miRNA regulatory complex RISC, has been implicated as an oncogene in hepatocellular carcinoma (HCC). In this study, we show that hepatocyte-specific SND1 transgenic mice (Alb/SND1 mice) develop spontaneous HCC with partial penetrance and exhibit more highly aggressive HCC induced by chemical carcinogenesis. Livers from Alb/SND1 mice exhibited a relative increase in inflammatory markers and spheroid-generating tumor-initiating cells (TIC). Mechanistic investigations defined roles for Akt and NF-κB signaling pathways in promoting TIC formation in Alb/SND1 mice. In human xenograft models of subcutaneous or orthotopic HCC, administration of the selective SND1 inhibitor 3', 5'-deoxythymidine bisphosphate (pdTp), inhibited tumor formation without effects on body weight or liver function. Our work establishes an oncogenic role for SND1 in promoting TIC formation and highlights pdTp as a highly selective SND1 inhibitor as a candidate therapeutic lead to treat advanced HCC. Cancer Res; 77(12); 3306-16. ©2017 AACR.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Animais , Antineoplásicos/farmacologia , Western Blotting , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Progressão da Doença , Endonucleases , Citometria de Fluxo , Imunofluorescência , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase , Nucleotídeos de Timina/farmacologia
7.
Hepatology ; 66(2): 466-480, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28437865

RESUMO

Nonalcoholic steatohepatitis (NASH) is the most prevalent cause of chronic liver disease in the Western world. However, an optimum therapy for NASH is yet to be established, mandating more in-depth investigation into the molecular pathogenesis of NASH to identify novel regulatory molecules and develop targeted therapies. Here, we unravel a unique function of astrocyte elevated gene-1(AEG-1)/metadherin in NASH using a transgenic mouse with hepatocyte-specific overexpression of AEG-1 (Alb/AEG-1) and a conditional hepatocyte-specific AEG-1 knockout mouse (AEG-1ΔHEP ). Alb/AEG-1 mice developed spontaneous NASH whereas AEG-1ΔHEP mice were protected from high-fat diet (HFD)-induced NASH. Intriguingly, AEG-1 overexpression was observed in livers of NASH patients and wild-type (WT) mice that developed steatosis upon feeding HFD. In-depth molecular analysis unraveled that inhibition of peroxisome proliferator-activated receptor alpha activity resulting in decreased fatty acid ß-oxidation, augmentation of translation of fatty acid synthase resulting in de novo lipogenesis, and increased nuclear factor kappa B-mediated inflammation act in concert to mediate AEG-1-induced NASH. Therapeutically, hepatocyte-specific nanoparticle-delivered AEG-1 small interfering RNA provided marked protection from HFD-induced NASH in WT mice. CONCLUSION: AEG-1 might be a key molecule regulating initiation and progression of NASH. AEG-1 inhibitory strategies might be developed as a potential therapeutic intervention in NASH patients. (Hepatology 2017;66:466-480).


Assuntos
Regulação da Expressão Gênica , Glicoproteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR alfa/metabolismo , Análise de Variância , Animais , Biópsia por Agulha , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Distribuição Aleatória , Papel (figurativo)
8.
Ann Transl Med ; 4(15): 286, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27569205

RESUMO

Hepatocellular carcinoma (HCC) accounts for the second largest number of cancer related deaths globally with limited management options for the advanced disease. Although substantial research has identified molecular targets, with strong validation in pre-clinical in vivo studies, translation of therapeutics to clinics has shown modest success. In a recent manuscript in Hepatology, Zhou and Yang et al. unravel a novel p53 associated long non-coding RNA (PRAL) as a potential prognostic marker and molecular target in HCC. Their work provides a promising approach at capitalizing the tumor suppressive role of p53 protein in fighting HCC. More importantly, it emphasizes the evolving significance of long non-coding RNAs (lncRNA) in molecular medicine. Current research trends focus on identifying and understanding roles of lncRNA in regulation of gene expression relevant to multiple disease pathophysiologies thereby presenting a new avenue of research in molecular and translational medicine.

9.
J Biol Chem ; 291(20): 10736-46, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-26997225

RESUMO

Staphylococcal nuclease and tudor domain containing 1 (SND1) is overexpressed in multiple cancers, including hepatocellular carcinoma (HCC), and functions as an oncogene. This study was carried out to identify novel SND1-interacting proteins to better understand its molecular mechanism of action. SND1-interacting proteins were identified by a modified yeast two-hybrid assay. Protein-protein interaction was confirmed by co-immunoprecipitation analysis. Monoglyceride lipase (MGLL) expression was analyzed by quantitative RT-PCR, Western blot, and immunohistochemistry. MGLL-overexpressing clones were analyzed for cell proliferation and cell cycle analysis and in vivo tumorigenesis in nude mice. MGLL was identified as an SND1-interacting protein. Interaction of SND1 with MGLL resulted in ubiquitination and proteosomal degradation of MGLL. MGLL expression was detected in normal human hepatocytes and mouse liver, although it was undetected in human HCC cell lines. An inverse correlation between SND1 and MGLL levels was identified in a human HCC tissue microarray as well as in the TCGA database. Forced overexpression of MGLL in human HCC cells resulted in marked inhibition in cell proliferation with a significant delay in cell cycle progression and a marked decrease in tumor growth in nude mouse xenograft assays. MGLL overexpression inhibited Akt activation that is independent of enzymatic activity of MGLL and overexpression of a constitutively active Akt rescued cells from inhibition of proliferation and restored normal cell cycle progression. This study unravels a novel mechanism of SND1 function and identifies MGLL as a unique tumor suppressor for HCC. MGLL might function as a homeostatic regulator of Akt restraining its activation.


Assuntos
Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Transformação Celular Neoplásica/metabolismo , Neoplasias Hepáticas/metabolismo , Monoacilglicerol Lipases/metabolismo , Proteínas Nucleares/metabolismo , Proteólise , Proteínas Supressoras de Tumor/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Endonucleases , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Monoacilglicerol Lipases/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-akt/biossíntese , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Supressoras de Tumor/genética , Ubiquitinação/genética
10.
Oncotarget ; 6(28): 26266-77, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26313006

RESUMO

Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality and poor prognosis. Oncogenic transcription factor Late SV40 Factor (LSF) plays an important role in promoting HCC. A small molecule inhibitor of LSF, Factor Quinolinone Inhibitor 1 (FQI1), significantly inhibited human HCC xenografts in nude mice without harming normal cells. Here we evaluated the efficacy of FQI1 and another inhibitor, FQI2, in inhibiting endogenous hepatocarcinogenesis. HCC was induced in a transgenic mouse with hepatocyte-specific overexpression of c-myc (Alb/c-myc) by injecting N-nitrosodiethylamine (DEN) followed by FQI1 or FQI2 treatment after tumor development. LSF inhibitors markedly decreased tumor burden in Alb/c-myc mice with a corresponding decrease in proliferation and angiogenesis. Interestingly, in vitro treatment of human HCC cells with LSF inhibitors resulted in mitotic arrest with an accompanying increase in CyclinB1. Inhibition of CyclinB1 induction by Cycloheximide or CDK1 activity by Roscovitine significantly prevented FQI-induced mitotic arrest. A significant induction of apoptosis was also observed upon treatment with FQI. These effects of LSF inhibition, mitotic arrest and induction of apoptosis by FQI1s provide multiple avenues by which these inhibitors eliminate HCC cells. LSF inhibitors might be highly potent and effective therapeutics for HCC either alone or in combination with currently existing therapies.


Assuntos
Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas de Ligação a DNA/antagonistas & inibidores , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Quinolonas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Dietilnitrosamina , Relação Dose-Resposta a Droga , Genes myc , Predisposição Genética para Doença , Humanos , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos Transgênicos , Mitose/efeitos dos fármacos , Terapia de Alvo Molecular , Neovascularização Patológica , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/metabolismo
11.
Bioconjug Chem ; 26(8): 1651-61, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26079152

RESUMO

Hepatocellular carcinoma (HCC) is a fatal cancer with no effective therapy. Astrocyte elevated gene-1 (AEG-1) plays a pivotal role in hepatocarcinogenesis and inhibits retinoic acid-induced gene expression and cell death. The combination of a lentivirus expressing AEG-1 shRNA and all-trans retinoic acid (ATRA) profoundly and synergistically inhibited subcutaneous human HCC xenografts in nude mice. We have now developed liver-targeted nanoplexes by conjugating poly(amidoamine) (PAMAM) dendrimers with polyethylene glycol (PEG) and lactobionic acid (Gal) (PAMAM-PEG-Gal) which were complexed with AEG-1 siRNA (PAMAM-AEG-1si). The polymer conjugate was characterized by (1)H-NMR, MALDI, and mass spectrometry; and optimal nanoplex formulations were characterized for surface charge, size, and morphology. Orthotopic xenografts of human HCC cell QGY-7703 expressing luciferase (QGY-luc) were established in the livers of athymic nude mice and tumor development was monitored by bioluminescence imaging (BLI). Tumor-bearing mice were treated with PAMAM-siCon, PAMAM-siCon+ATRA, PAMAM-AEG-1si, and PAMAM-AEG-1si+ATRA. In the control group the tumor developed aggressively. ATRA showed little effect due to high AEG-1 levels in QGY-luc cells. PAMAM-AEG-1si showed significant reduction in tumor growth, and the combination of PAMAM-AEG-1si+ATRA showed profound and synergistic inhibition so that the tumors were almost undetectable by BLI. A marked decrease in AEG-1 level was observed in tumor samples treated with PAMAM-AEG-1si. The group treated with PAMAM-AEG-1si+ATRA nanoplexes showed increased necrosis, inhibition of proliferation, and increased apoptosis when compared to other groups. Liver is an ideal organ for RNAi therapy and ATRA is an approved anticancer agent. Our exciting observations suggest that the combinatorial approach might be an effective way to combat HCC.


Assuntos
Carcinoma Hepatocelular/terapia , Moléculas de Adesão Celular/antagonistas & inibidores , Neoplasias Hepáticas/terapia , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/genética , Tretinoína/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Moléculas de Adesão Celular/genética , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Terapia Genética , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Nanopartículas/química , Proteínas de Ligação a RNA , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Hepat Oncol ; 2(3): 303-312, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26798451

RESUMO

AEG-1 is an oncogene that is overexpressed in all cancers, including hepatocellular carcinoma. AEG-1 plays a seminal role in promoting cancer development and progression by augmenting proliferation, invasion, metastasis, angiogenesis and chemoresistance, all hallmarks of aggressive cancer. AEG-1 mediates its oncogenic function predominantly by interacting with various protein complexes. AEG-1 acts as a scaffold protein, activating multiple protumorigenic signal transduction pathways, such as MEK/ERK, PI3K/Akt, NF-κB and Wnt/ß-catenin while regulating gene expression at transcriptional, post-transcriptional and translational levels. Our recent studies document that AEG-1 is fundamentally required for activation of inflammation. A comprehensive and convincing body of data currently points to AEG-1 as an essential component critical to the onset and progression of cancer. The present review describes the current knowledge gleaned from patient and experimental studies as well as transgenic and knockout mouse models, on the impact of AEG-1 on hepatocarcinogenesis.

13.
Int J Oncol ; 46(2): 465-73, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25405367

RESUMO

The staphylococcal nuclease and tudor domain containing 1 (SND1) is a multifunctional protein overexpressed in breast, prostate, colorectal and hepatocellular carcinomas and malignant glioma. Molecular studies have revealed the multifaceted activities of SND1 involved in regulating gene expression at transcriptional as well as post-transcriptional levels. Early studies identified SND1 as a transcriptional co-activator. SND1 is also a component of RNA-induced silencing complex (RISC) thus mediating RNAi function, a regulator of mRNA splicing, editing and stability, and plays a role in maintenance of cell viability. Such diverse actions allow the SND1 to modulate a complex array of molecular networks, thereby promoting carcinogenesis. Here, we describe the crucial role of SND1 in cancer development and progression, and highlight SND1 as a potential target for therapeutic intervention.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/genética , Proteínas Nucleares/genética , Carboxipeptidases/genética , Endonucleases , Humanos , Terapia de Alvo Molecular , Neoplasias/patologia , Proteínas Nucleares/biossíntese , Interferência de RNA , Splicing de RNA/genética
14.
J Hepatocell Carcinoma ; 1: 9-19, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27508172

RESUMO

Hepatocellular carcinoma (HCC) is a vicious and highly vascular cancer with a dismal prognosis. It is a life-threatening illness worldwide that ranks fifth in terms of cancer prevalence and third in cancer deaths. Most patients are diagnosed at an advanced stage by which time conventional therapies are no longer effective. Targeted molecular therapies, such as the multikinase inhibitor sorafenib, provide a modest increase in survival for advanced HCC patients and display significant toxicity. Thus, there is an immense need to identify novel regulators of HCC that might be targeted effectively. The insulin-like growth factor (IGF) axis is commonly abnormal in HCC. Upon activation, the IGF axis controls metabolism, tissue homeostasis, and survival. Insulin-like growth factor-binding protein 7 (IGFBP7) is a secreted protein of a family of low-affinity IGF-binding proteins termed "IGFBP-related proteins" that have been identified as a potential tumor suppressor in HCC. IGFBP7 has been implicated in regulating cellular proliferation, senescence, and angiogenesis. In this review, we provide a comprehensive discussion of the role of IGFBP7 in HCC and the potential use of IGFBP7 as a novel biomarker for drug resistance and as an effective therapeutic strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...