Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 792, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951693

RESUMO

The African buffalo (Syncerus caffer) is a wild bovid with a historical distribution across much of sub-Saharan Africa. Genomic analysis can provide insights into the evolutionary history of the species, and the key selective pressures shaping populations, including assessment of population level differentiation, population fragmentation, and population genetic structure. In this study we generated the highest quality de novo genome assembly (2.65 Gb, scaffold N50 69.17 Mb) of African buffalo to date, and sequenced a further 195 genomes from across the species distribution. Principal component and admixture analyses provided little support for the currently described four subspecies. Estimating Effective Migration Surfaces analysis suggested that geographical barriers have played a significant role in shaping gene flow and the population structure. Estimated effective population sizes indicated a substantial drop occurring in all populations 5-10,000 years ago, coinciding with the increase in human populations. Finally, signatures of selection were enriched for key genes associated with the immune response, suggesting infectious disease exert a substantial selective pressure upon the African buffalo. These findings have important implications for understanding bovid evolution, buffalo conservation and population management.


Assuntos
Búfalos , Genoma , Genômica , Búfalos/genética , Animais , Genômica/métodos , Fluxo Gênico , África Subsaariana , Genética Populacional , Filogenia , Variação Genética
2.
J Biol Chem ; 300(6): 107338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705391

RESUMO

Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize small molecule metabolites presented by major histocompatibility complex class I related protein 1 (MR1), via an αß T cell receptor (TCR). MAIT TCRs feature an essentially invariant TCR α-chain, which is highly conserved between mammals. Similarly, MR1 is the most highly conserved major histocompatibility complex-I-like molecule. This extreme conservation, including the mode of interaction between the MAIT TCR and MR1, has been shown to allow for species-mismatched reactivities unique in T cell biology, thereby allowing the use of selected species-mismatched MR1-antigen (MR1-Ag) tetramers in comparative immunology studies. However, the pattern of cross-reactivity of species-mismatched MR1-Ag tetramers in identifying MAIT cells in diverse species has not been formally assessed. We developed novel cattle and pig MR1-Ag tetramers and utilized these alongside previously developed human, mouse, and pig-tailed macaque MR1-Ag tetramers to characterize cross-species tetramer reactivities. MR1-Ag tetramers from each species identified T cell populations in distantly related species with specificity that was comparable to species-matched MR1-Ag tetramers. However, there were subtle differences in staining characteristics with practical implications for the accurate identification of MAIT cells. Pig MR1 is sufficiently conserved across species that pig MR1-Ag tetramers identified MAIT cells from the other species. However, MAIT cells in pigs were at the limits of phenotypic detection. In the absence of sheep MR1-Ag tetramers, a MAIT cell population in sheep blood was identified phenotypically, utilizing species-mismatched MR1-Ag tetramers. Collectively, our results validate the use and define the limitations of species-mismatched MR1-Ag tetramers in comparative immunology studies.


Assuntos
Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Células T Invariantes Associadas à Mucosa , Especificidade da Espécie , Animais , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Camundongos , Bovinos , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/química , Suínos , Macaca , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética
3.
Mucosal Immunol ; 15(3): 428-442, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35145208

RESUMO

For the first time we have defined naïve, central memory, effector memory and differentiated effector porcine CD8 T cells and analyzed their distribution in lymphoid and respiratory tissues after influenza infection or immunization, using peptide-MHC tetramers of three influenza nucleoprotein (NP) epitopes. The hierarchy of response to the three epitopes changes during the response in different tissues. Most NP-specific CD8 T cells in broncho-alveolar lavage (BAL) and lung are tissue resident memory cells (TRM) that express CD69 and downregulate CD45RA and CCR7. NP-specific cells isolated from BAL express genes characteristic of TRM, but gene expression differs at 7, 21 and 63 days post infection. In all tissues the frequency of NP-specific CD8 cells declines over 63 days almost to background levels but is best maintained in BAL. The kinetic of influenza specific memory CD8 T cell in this natural host species differs from that in small animal models.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Linfócitos T CD8-Positivos , Epitopos , Humanos , Memória Imunológica , Células T de Memória , Simulação de Dinâmica Molecular , Suínos
4.
Front Genet ; 12: 684127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335691

RESUMO

East Coast fever (ECF) in cattle is caused by the Apicomplexan protozoan parasite Theileria parva, transmitted by the three-host tick Rhipicephalus appendiculatus. The African buffalo (Syncerus caffer) is the natural host for T. parva but does not suffer disease, whereas ECF is often fatal in cattle. The genetic relationship between T. parva populations circulating in cattle and buffalo is poorly understood, and has not been studied in sympatric buffalo and cattle. This study aimed to determine the genetic diversity of T. parva populations in cattle and buffalo, in an area where livestock co-exist with buffalo adjacent to the Serengeti National Park, Tanzania. Three T. parva antigens (Tp1, Tp4, and Tp16), known to be recognized by CD8+ and CD4+ T cells in immunized cattle, were used to characterize genetic diversity of T. parva in cattle (n = 126) and buffalo samples (n = 22). Long read (PacBio) sequencing was used to generate full or near-full length allelic sequences. Patterns of diversity were similar across all three antigens, with allelic diversity being significantly greater in buffalo-derived parasites compared to cattle-derived (e.g., for Tp1 median cattle allele count was 9, and 81.5 for buffalo), with very few alleles shared between species (8 of 651 alleles were shared for Tp1). Most alleles were unique to buffalo with a smaller proportion unique to cattle (412 buffalo unique vs. 231 cattle-unique for Tp1). There were indications of population substructuring, with one allelic cluster of Tp1 representing alleles found in both cattle and buffalo (including the TpM reference genome allele), and another containing predominantly only alleles deriving from buffalo. These data illustrate the complex interplay between T. parva populations in buffalo and cattle, revealing the significant genetic diversity in the buffalo T. parva population, the limited sharing of parasite genotypes between the host species, and highlight that a subpopulation of T. parva is maintained by transmission within cattle. The data indicate that fuller understanding of buffalo T. parva population dynamics is needed, as only a comprehensive appreciation of the population genetics of T. parva populations will enable assessment of buffalo-derived infection risk in cattle, and how this may impact upon control measures such as vaccination.

5.
PLoS Pathog ; 17(7): e1009734, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310651

RESUMO

Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma congolense. In comparison to the well-studied T. brucei, there is a major paucity of knowledge regarding the biology of T. congolense. Here, we use a combination of omics technologies and novel genetic tools to characterise core metabolism in T. congolense mammalian-infective bloodstream-form parasites, and test whether metabolic differences compared to T. brucei impact upon sensitivity to metabolic inhibition. Like the bloodstream stage of T. brucei, glycolysis plays a major part in T. congolense energy metabolism. However, the rate of glucose uptake is significantly lower in bloodstream stage T. congolense, with cells remaining viable when cultured in concentrations as low as 2 mM. Instead of pyruvate, the primary glycolytic endpoints are succinate, malate and acetate. Transcriptomics analysis showed higher levels of transcripts associated with the mitochondrial pyruvate dehydrogenase complex, acetate generation, and the glycosomal succinate shunt in T. congolense, compared to T. brucei. Stable-isotope labelling of glucose enabled the comparison of carbon usage between T. brucei and T. congolense, highlighting differences in nucleotide and saturated fatty acid metabolism. To validate the metabolic similarities and differences, both species were treated with metabolic inhibitors, confirming that electron transport chain activity is not essential in T. congolense. However, the parasite exhibits increased sensitivity to inhibition of mitochondrial pyruvate import, compared to T. brucei. Strikingly, T. congolense exhibited significant resistance to inhibitors of fatty acid synthesis, including a 780-fold higher EC50 for the lipase and fatty acid synthase inhibitor Orlistat, compared to T. brucei. These data highlight that bloodstream form T. congolense diverges from T. brucei in key areas of metabolism, with several features that are intermediate between bloodstream- and insect-stage T. brucei. These results have implications for drug development, mechanisms of drug resistance and host-pathogen interactions.


Assuntos
Trypanosoma brucei brucei/metabolismo , Trypanosoma congolense/metabolismo , Animais , Reguladores do Metabolismo de Lipídeos/farmacologia , Camundongos , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos , Tripanossomíase Africana
6.
Mol Microbiol ; 116(2): 564-588, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33932053

RESUMO

Trypanosoma congolense is a principal agent causing livestock trypanosomiasis in Africa, costing developing economies billions of dollars and undermining food security. Only the diamidine diminazene and the phenanthridine isometamidium are regularly used, and resistance is widespread but poorly understood. We induced stable diminazene resistance in T. congolense strain IL3000 in vitro. There was no cross-resistance with the phenanthridine drugs, melaminophenyl arsenicals, oxaborole trypanocides, or with diamidine trypanocides, except the close analogs DB829 and DB75. Fluorescence microscopy showed that accumulation of DB75 was inhibited by folate. Uptake of [3 H]-diminazene was slow with low affinity and partly but reciprocally inhibited by folate and by competing diamidines. Expression of T. congolense folate transporters in diminazene-resistant Trypanosoma brucei brucei significantly sensitized the cells to diminazene and DB829, but not to oxaborole AN7973. However, [3 H]-diminazene transport studies, whole-genome sequencing, and RNA-seq found no major changes in diminazene uptake, folate transporter sequence, or expression. Instead, all resistant clones displayed a moderate reduction in the mitochondrial membrane potential Ψm. We conclude that diminazene uptake in T. congolense proceed via multiple low affinity mechanisms including folate transporters; while resistance is associated with a reduction in Ψm it is unclear whether this is the primary cause of the resistance.


Assuntos
Diminazena/farmacologia , Potencial da Membrana Mitocondrial/fisiologia , Tripanossomicidas/farmacologia , Trypanosoma congolense/efeitos dos fármacos , Tripanossomíase Africana/veterinária , Tripanossomíase Bovina/tratamento farmacológico , Animais , Bovinos , Resistência a Medicamentos/fisiologia , Transportadores de Ácido Fólico/metabolismo , Fenantridinas/farmacologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Tripanossomíase Bovina/parasitologia
7.
Front Immunol ; 12: 627173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777010

RESUMO

Mucosal-associated invariant T (MAIT) cells are a population of innate-like T cells that utilize a semi-invariant T cell receptor (TCR) α chain and are restricted by the highly conserved antigen presenting molecule MR1. MR1 presents microbial riboflavin biosynthesis derived metabolites produced by bacteria and fungi. Consistent with their ability to sense ligands derived from bacterial sources, MAIT cells have been associated with the immune response to a variety of bacterial infections, such as Mycobacterium spp., Salmonella spp. and Escherichia coli. To date, MAIT cells have been studied in humans, non-human primates and mice. However, they have only been putatively identified in cattle by PCR based methods; no phenotypic or functional analyses have been performed. Here, we identified a MAIT cell population in cattle utilizing MR1 tetramers and high-throughput TCR sequencing. Phenotypic analysis of cattle MAIT cells revealed features highly analogous to those of MAIT cells in humans and mice, including expression of an orthologous TRAV1-TRAJ33 TCR α chain, an effector memory phenotype irrespective of tissue localization, and expression of the transcription factors PLZF and EOMES. We determined the frequency of MAIT cells in peripheral blood and multiple tissues, finding that cattle MAIT cells are enriched in mucosal tissues as well as in the mesenteric lymph node. Cattle MAIT cells were responsive to stimulation by 5-OP-RU and riboflavin biosynthesis competent bacteria in vitro. Furthermore, MAIT cells in milk increased in frequency in cows with mastitis. Following challenge with virulent Mycobacterium bovis, a causative agent of bovine tuberculosis and a zoonosis, peripheral blood MAIT cells expressed higher levels of perforin. Thus, MAIT cells are implicated in the immune response to two major bacterial infections in cattle. These data suggest that MAIT cells are functionally highly conserved and that cattle are an excellent large animal model to study the role of MAIT cells in important zoonotic infections.


Assuntos
Infecções Bacterianas/imunologia , Bovinos/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Animais , Citocinas/farmacologia , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Masculino , Camundongos , Antígenos de Histocompatibilidade Menor/imunologia , Fenótipo , Ribitol/análogos & derivados , Ribitol/farmacologia , Uracila/análogos & derivados , Uracila/farmacologia
8.
Nat Commun ; 11(1): 4739, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958756

RESUMO

More people globally depend on the water buffalo than any other domesticated species, and as the most closely related domesticated species to cattle they can provide important insights into the shared evolutionary basis of domestication. Here, we sequence the genomes of 79 water buffalo across seven breeds and compare patterns of between breed selective sweeps with those seen for 294 cattle genomes representing 13 global breeds. The genomic regions under selection between cattle breeds significantly overlap regions linked to stature in human genetic studies, with a disproportionate number of these loci also shown to be under selection between water buffalo breeds. Investigation of potential functional variants in the water buffalo genome identifies a rare example of convergent domestication down to the same mutation having independently occurred and been selected for across domesticated species. Cross-species comparisons of recent selective sweeps can consequently help identify and refine important loci linked to domestication.


Assuntos
Búfalos/genética , Bovinos/genética , Domesticação , Genoma/genética , Animais , Cruzamento , Búfalos/classificação , Bovinos/classificação , Evolução Molecular , Loci Gênicos/genética , Variação Genética , Fenótipo , Filogeografia , Seleção Genética
9.
PLoS Negl Trop Dis ; 13(4): e0007262, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30943202

RESUMO

Antigenic variation is employed by many pathogens to evade the host immune response, and Trypanosoma brucei has evolved a complex system to achieve this phenotype, involving sequential use of variant surface glycoprotein (VSG) genes encoded from a large repertoire of ~2,000 genes. T. brucei express multiple, sometimes closely related, VSGs in a population at any one time, and the ability to resolve and analyse this diversity has been limited. We applied long read sequencing (PacBio) to VSG amplicons generated from blood extracted from batches of mice sacrificed at time points (days 3, 6, 10 and 12) post-infection with T. brucei TREU927. The data showed that long read sequencing is reliable for resolving variant differences between VSGs, and demonstrated that there is significant expressed diversity (449 VSGs detected across 20 mice) and across the timeframe of study there was a clear semi-reproducible pattern of expressed diversity (median of 27 VSGs per sample at day 3 post infection (p.i.), 82 VSGs at day 6 p.i., 187 VSGs at day 10 p.i. and 132 VSGs by day 12 p.i.). There was also consistent detection of one VSG dominating expression across replicates at days 3 and 6, and emergence of a second dominant VSG across replicates by day 12. The innovative application of ecological diversity analysis to VSG reads enabled characterisation of hierarchical VSG expression in the dataset, and resulted in a novel method for analysing such patterns of variation. Additionally, the long read approach allowed detection of mosaic VSG expression from very few reads-the earliest in infection that such events have been detected. Therefore, our results indicate that long read analysis is a reliable tool for resolving diverse gene expression profiles, and provides novel insights into the complexity and nature of VSG expression in trypanosomes, revealing significantly higher diversity than previously shown and the ability to identify mosaic gene formation early during the infection process.


Assuntos
Variação Antigênica , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Animais , Expressão Gênica , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Parasita , Camundongos , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia
10.
PLoS Negl Trop Dis ; 13(2): e0007189, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30779758

RESUMO

Human and animal African trypanosomiasis (HAT & AAT, respectively) remain a significant health and economic issue across much of sub-Saharan Africa. Effective control of AAT and potential eradication of HAT requires affordable, sensitive and specific diagnostic tests that can be used in the field. Small RNAs in the blood or serum are attractive disease biomarkers due to their stability, accessibility and available technologies for detection. Using RNAseq, we have identified a trypanosome specific small RNA to be present at high levels in the serum of infected cattle. The small RNA is derived from the non-coding 7SL RNA of the peptide signal recognition particle and is detected in the serum of infected cattle at significantly higher levels than in the parasite, suggesting active processing and secretion. We show effective detection of the small RNA in the serum of infected cattle using a custom RT-qPCR assay. Strikingly, the RNA can be detected before microscopy detection of parasitaemia in the blood, and it can also be detected during remission periods of infection when no parasitaemia is detectable by microscopy. However, RNA levels drop following treatment with trypanocides, demonstrating accurate prediction of active infection. While the small RNA sequence is conserved between different species of trypanosome, nucleotide differences within the sequence allow generation of highly specific assays that can distinguish between infections with Trypanosoma brucei, Trypanosoma congolense and Trypanosoma vivax. Finally, we demonstrate effective detection of the small RNA directly from serum, without the need for pre-processing, with a single step RT-qPCR assay. Our findings identify a species-specific trypanosome small RNA that can be detected at high levels in the serum of cattle with active parasite infections. This provides the basis for the development of a cheap, non-invasive and highly effective diagnostic test for trypanosomiasis.


Assuntos
Doenças dos Bovinos/diagnóstico , RNA Citoplasmático Pequeno/sangue , Partícula de Reconhecimento de Sinal/sangue , Trypanosoma brucei gambiense/genética , Trypanosoma congolense/genética , Tripanossomíase Africana/veterinária , Tripanossomíase Bovina/diagnóstico , Animais , Biomarcadores/sangue , Bovinos , Doenças dos Bovinos/parasitologia , Feminino , Genoma de Protozoário , Masculino , Técnicas de Diagnóstico Molecular , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Tripanossomicidas/uso terapêutico , Trypanosoma brucei gambiense/efeitos dos fármacos , Trypanosoma congolense/efeitos dos fármacos , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Bovina/tratamento farmacológico
11.
Vet Res ; 49(1): 54, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970174

RESUMO

Cattle are an economically important domestic animal species. In vitro 2D cultures of intestinal epithelial cells or epithelial cell lines have been widely used to study cell function and host-pathogen interactions in the bovine intestine. However, these cultures lack the cellular diversity encountered in the intestinal epithelium, and the physiological relevance of monocultures of transformed cell lines is uncertain. Little is also known of the factors that influence cell differentiation and homeostasis in the bovine intestinal epithelium, and few cell-specific markers that can distinguish the different intestinal epithelial cell lineages have been reported. Here we describe a simple and reliable procedure to establish in vitro 3D enteroid, or "mini gut", cultures from bovine small intestinal (ileal) crypts. These enteroids contained a continuous central lumen lined with a single layer of polarized enterocytes, bound by tight junctions with abundant microvilli on their apical surfaces. Histological and transcriptional analyses suggested that the enteroids comprised a mixed population of intestinal epithelial cell lineages including intestinal stem cells, enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We show that bovine enteroids can be successfully maintained long-term through multiple serial passages without observable changes to their growth characteristics, morphology or transcriptome. Furthermore, the bovine enteroids can be cryopreserved and viable cultures recovered from frozen stocks. Our data suggest that these 3D bovine enteroid cultures represent a novel, physiologically-relevant and tractable in vitro system in which epithelial cell differentiation and function, and host-pathogen interactions in the bovine small intestine can be studied.


Assuntos
Técnicas de Cultura de Células/veterinária , Diferenciação Celular , Células Epiteliais/fisiologia , Íleo/fisiologia , Animais , Bovinos , Técnicas de Cultura de Células/métodos , Células Cultivadas/fisiologia , Células Epiteliais/citologia
12.
New Phytol ; 209(3): 1120-34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26428397

RESUMO

Pathogens target phytohormone signalling pathways to promote disease. Plants deploy salicylic acid (SA)-mediated defences against biotrophs. Pathogens antagonize SA immunity by activating jasmonate signalling, for example Pseudomonas syringae pv. tomato DC3000 produces coronatine (COR), a jasmonic acid (JA) mimic. This study found unexpected dynamics between SA, JA and COR and co-operation between JAZ jasmonate repressor proteins during DC3000 infection. We used a systems-based approach involving targeted hormone profiling, high-temporal-resolution micro-array analysis, reverse genetics and mRNA-seq. Unexpectedly, foliar JA did not accumulate until late in the infection process and was higher in leaves challenged with COR-deficient P. syringae or in the more resistant JA receptor mutant coi1. JAZ regulation was complex and COR alone was insufficient to sustainably induce JAZs. JAZs contribute to early basal and subsequent secondary plant defence responses. We showed that JAZ5 and JAZ10 specifically co-operate to restrict COR cytotoxicity and pathogen growth through a complex transcriptional reprogramming that does not involve the basic helix-loop-helix transcription factors MYC2 and related MYC3 and MYC4 previously shown to restrict pathogen growth. mRNA-seq predicts compromised SA signalling in a jaz5/10 mutant and rapid suppression of JA-related components on bacterial infection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Aminoácidos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Indenos/farmacologia , Isoleucina/análogos & derivados , Isoleucina/farmacologia , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Pseudomonas syringae/efeitos dos fármacos , Pseudomonas syringae/patogenicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Virulência/efeitos dos fármacos
13.
Plant Cell ; 27(11): 3038-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26566919

RESUMO

Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae.


Assuntos
Arabidopsis/imunologia , Terapia de Imunossupressão , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal/genética , Folhas de Planta/imunologia , Pseudomonas syringae/fisiologia , Transcrição Gênica , Arabidopsis/genética , Arabidopsis/microbiologia , Sequência de Bases , Cromatina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Redes Reguladoras de Genes , Genes de Plantas , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Regiões Promotoras Genéticas/genética , Pseudomonas syringae/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
14.
Nat Plants ; 1: 15074, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27250009

RESUMO

Microbe associated molecular pattern (MAMP) receptors in plants recognize MAMPs and activate basal defences; however a complete understanding of the molecular and physiological mechanisms conferring immunity remains elusive. Pathogens suppress active defence in plants through the combined action of effector proteins. Here we show that the chloroplast is a key component of early immune responses. MAMP perception triggers the rapid, large-scale suppression of nuclear encoded chloroplast-targeted genes (NECGs). Virulent Pseudomonas syringae effectors reprogramme NECG expression in Arabidopsis, target the chloroplast and inhibit photosynthetic CO2 assimilation through disruption of photosystem II. This activity prevents a chloroplastic reactive oxygen burst. These physiological changes precede bacterial multiplication and coincide with pathogen-induced abscisic acid (ABA) accumulation. MAMP pretreatment protects chloroplasts from effector manipulation, whereas application of ABA or the inhibitor of photosynthetic electron transport, DCMU, abolishes the MAMP-induced chloroplastic reactive oxygen burst, and enhances growth of a P. syringae hrpA mutant that fails to secrete effectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...