Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(30): 42889-42901, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38884933

RESUMO

Naphthenic acids (NA) are organic compounds commonly found in crude oil and produced water, known for their recalcitrance and toxicity. This study introduces a new adsorbent, a polymer derived from spent coffee grounds (SCGs), through a straightforward cross-linking method for removing cyclohexane carboxylic acid as representative NA. The adsorption kinetics followed a pseudo-second-order model for the data (0.007 g min-1 mg-1), while the equilibrium data fitted the Sips model ( q m = 140.55 mg g-1). The process's thermodynamics indicated that the target NA's adsorption was spontaneous and exothermic. The localized sterical and energetic aspects were investigated through statistical physical modeling, which corroborated that the adsorption occurred indeed in monolayer, as suggested by the Sips model, but revealed the contribution of two energies per site ( n 1 ; n 2 ). The number of molecules adsorbed per site ( n ) was highly influenced by the temperature as n 1 decreased with increasing temperature and n 2 increased. These results were experimentally demonstrated within the pH range between 4 and 6, where both C6H11COO-(aq.) and C6H11COOH(aq.) species coexisted and were adsorbed by different energy sites. The polymer produced was naturally porous and amorphous, with a low surface area of 20 to 30 m2 g-1 that presented more energetically accessible sites than other adsorbents with much higher surface areas. Thus, this study shows that the relation between surface area and high adsorption efficiency depends on the compatibility between the energetic states of the receptor sites, the speciation of the adsorbate molecules, and the temperature range studied.


Assuntos
Ácidos Carboxílicos , Café , Polímeros , Adsorção , Café/química , Ácidos Carboxílicos/química , Polímeros/química , Cinética , Cicloexanos/química , Poluentes Químicos da Água/química , Termodinâmica
2.
Pestic Biochem Physiol ; 202: 105917, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879319

RESUMO

Owing to their beneficial functional capabilities, essential oils were largely used. However, their low aqueous solubility, instability, and high volatility urged scientists to their encapsulation with cyclodextrins (CDs) to tackle their shortcomings. In this study, the co-precipitation method was used to prepare ß-CD/Eucalyptus globulus essential oil (EGEO) inclusion complexes (ICs). ß-CD/EGEO ICs were prepared at ratios (w:w) 1:2 and 1:4 with an encapsulation efficiency of 93 and 96%, respectively. The ICs characterization using the Fourier transform Infrared spectroscopy, differential scanning calorimetry, X-ray powder diffraction, Dynamic Light Scattering, and Laser Doppler Velocimetry confirmed the formation of ß-CD/EGEO ICs. The insecticidal activity of the free EGEO and ICs was explored and displayed that the complex ß-CD/EGEO 1:4 had the highest activity with the lowest LC50 against Ephestia kuehniella larvae (5.03 ± 1.16 mg/g) when compared to the free oil (8.38 ± 1.95 mg/g). Molecular docking simulations stipulated that the compound α-Bisabolene epoxide had the best docking score (ΔG = -7.4 Kcal/mol) against the selected insecticidal target α-amylase. Additionally, toxicity evaluation of the studied essential oil suggested that it could be safely used as a potent bioinsecticide as compared to chemical insecticides. This study reveals that the formation of ß-CD/EGEO ICs enhanced the oil activity and stability and could be a promising and safe tool to boost its application in food or pharmaceutical fields.


Assuntos
Eucalyptus , Inseticidas , Larva , Simulação de Acoplamento Molecular , Óleos Voláteis , beta-Ciclodextrinas , Animais , Inseticidas/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Eucalyptus/química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia , Besouros/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
Plant Physiol Biochem ; 212: 108775, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810521

RESUMO

Due to their fixed lifestyle, plants must adapt to abiotic or biotic stresses by orchestrating various responses, including protective and growth control measures. Growth arrest is provoked upon abiotic stress and can impair plant production. Members of the plant-specific GASA (gibberellic acid-stimulated Arabidopsis) gene family play crucial roles in phytohormone responses, abiotic and biotic stresses, and plant growth. Here, we recognized and examined the LmGASA1 gene from the halophyte plant Lobularia maritima and developed marker-free engineered durum wheat plants overexpressing the gene. The LmGASA1 transcript profile revealed that it's induced by stressful events as well as by phytohormones including GA3, MeJA, and ABA, suggesting that the LmGASA1 gene may contribute to these stress and hormone signal transduction pathways. Transient expression of GFP-LmGASA1 fusion in onion epidermal cells indicated that LmGASA1 is localized to the cell membrane. Further analysis showed that overexpression of LmGASA1 in durum wheat plants enhanced tolerance to drought stress compared with that in non-transgenic (NT) plants, imposing no yield penalty and enabling seed production even following drought stress at the vegetative stage. Altogether, our data indicate that LmGASA1 regulates both the scavenging capacity of the antioxidant enzymatic system and the activation of at least six stress-related genes that function as positive regulators of drought stress tolerance. LmGASA1 appears to be a novel gene useful for further functional analysis and potential engineering for drought stress tolerance in crops.


Assuntos
Secas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Triticum , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Reguladores de Crescimento de Plantas/metabolismo , Resistência à Seca
4.
Environ Sci Pollut Res Int ; 31(13): 19974-19985, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368300

RESUMO

Using organic waste and residue streams to be turned into valuable and greener materials for various applications has proven an efficient and suitable strategy. In this work, two green materials (nanosponges and a polymer) were synthesized using potato peels and applied for the first time to adsorb and recover Neodymium (Nd3+) from aqueous solutions. The recovery of Nd3+ that belongs to the rare earth elements has attracted important interest due to its/their importance in several industrial and technological applications. The fine potato peel waste (FPPW) polymer presented an irregular shape and porous surface. At the same time, the ß-cyclodextrin (ß-CD) nanosponges had uniform distribution with regular and smooth shapes. ß-CD nanosponges exhibited a much higher total carboxyl content (4.02 mmol g-1) than FPPW (2.50 mmol g-1), which could impact the Nd3+ adsorption performance because carboxyl groups can interact with cations. The adsorption capacity increased with the increase of the pH, reaching its maximum at pHs 6-7 for ß-CD nanosponges and 4-7 for FPPW polymer. The kinetic and equilibrium data were well-fitted by General order and Liu models. ß-CD nanosponges attained adsorption capacity near 100 mg Nd per gram of adsorbent. Thermodynamic and statistical physical results corroborated that the adsorption mechanism was due to electrostatic interaction/complexation and that the carboxyl groups were important in the interactions. ß-CD nanosponges (three cycles of use) were more effective than FPPW (one cycle of use) in the regeneration. Finally, ß-CD nanosponges could be considered an eco-friendly adsorbent to recover Nd3+ from aqueous matrices.


Assuntos
Solanum tuberosum , beta-Ciclodextrinas , Neodímio , Adsorção , Polímeros , beta-Ciclodextrinas/química , Água/química , Física , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...