Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Pflugers Arch ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382598

RESUMO

SARS-CoV-2 virus infects cells by engaging with ACE2 requiring protease TMPRSS2. ACE2 is highly expressed in kidneys. Predictors for severe disease are high age and male sex. We hypothesized that ACE2 and TMPRSS2 proteins are more abundant (1) in males and with increasing age in kidney and (2) in urine and extracellular vesicles (EVs) from male patients with COVID-19 and (3) SARS-CoV-2 is present in urine and EVs during infection. Kidney cortex samples from patients subjected to cancer nephrectomy (male/female; < 50 years/˃75 years, n = 24; ˃80 years, n = 15) were analyzed for ACE2 and TMPRSS2 protein levels. Urine from patients hospitalized with SARS-CoV-2 infection was analyzed for ACE2 and TMPRSS2. uEVs were used for immunoblotting and SARS-CoV-2 mRNA and antigen detection. Tissue ACE2 and TMPRSS2 protein levels did not change with age. ACE2 was not more abundant in male kidneys in any age group. ACE2 protein was associated with proximal tubule apical membranes in cortex. TMPRSS2 was observed predominantly in the medulla. ACE2 was elevated significantly in uEVs and urine from patients with COVID-19 with no sex difference compared with urine from controls w/wo albuminuria. TMPRSS2 was elevated in uEVs from males compared to female. ACE2 and TMPRSS2 did not co-localize in uEVs/apical membranes. SARS-CoV-2 nucleoprotein and mRNA were not detected in urine. Higher kidney ACE2 protein abundance is unlikely to explain higher susceptibility to SARS-CoV-2 infection in males. Kidney tubular cells appear not highly susceptible to SARS-CoV-2 infection. Loss of ACE2 into urine in COVID could impact susceptibility and angiotensin metabolism.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39298549

RESUMO

Natriuretic peptide receptor-A (NPR-A) is the principal receptor for the natriuretic peptides ANP and BNP. Targeted deletion of NPR-A in mouse glomerular podocytes significantly enhances renal injury in vivo in the DOCA-salt experimental model. It was therefore hypothesized that natriuretic peptides exert a direct protective effect on glomerular barrier integrity through activation of NPR-A and modulation of gene expression patterns in podocytes. Green fluorescence-positive podocytes from mice with a conditional deletion of Npr1 encoding NPR-A were isolated by fluorescence-activated cell sorting. Differentially expressed genes (DEGs) in podocytes were identified by RNA sequencing of podocytes from wild-type and NPR-A deleted mice. Enrichment analysis was performed on the DEGs using Gene Ontology (GO) terms. Identified transcripts were validated by real-time PCR and ELISA of cultured isolated human and mouse glomeruli. In addition, the effect of natriuretic peptides on podocyte migration was investigated by measuring the outgrowth of podocytes from cultured glomeruli. A total of 158 DEGs were identified with 81 downregulated and 77 upregulated DEGs in Npr1 deficient podocytes. Among the downregulated genes were protein S and semaphorin 3G, which are known to have a protective effect in podocytes. Protein S was also expressed in and secreted from isolated human glomeruli. GO enrichment analysis revealed that the upregulated DEGs in NPR-A deficient podocytes were associated with cell migration and motility. In line, BNP significantly decreased podocyte outgrowth from cultured glomeruli. Endogenous levels of natriuretic peptides in mice support baseline protective pathways at glomerular podocytes such as protein S and suppress podocyte migration.

3.
Cardiovasc Res ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167826

RESUMO

AIMS: Cellular Communication Network Factor 2 (CCN2) is a matricellular protein implicated in fibrotic diseases, with ongoing clinical trials evaluating anti-CCN2-based therapies. By uncovering CCN2 as abundantly expressed in non-diseased artery tissue, this study aimed to investigate the hypothesis that CCN2 plays a pivotal role in maintaining smooth muscle cell (SMC) phenotype and protection against atherosclerosis. METHODS AND RESULTS: Global- and SMC-specific Ccn2 knockout mouse models were employed to demonstrate that Ccn2 deficiency leads to SMC de-differentiation, medial thickening, and aorta elongation under normolipidemic conditions. Inducing hyperlipidemia in both models resulted in severe aorta malformation and a 17-fold increase in atherosclerosis formation. Lipid-rich lesions developed at sites of the vasculature typically protected from atherosclerosis-development by laminar blood flow, covering 90% of aortas, and extending to other vessels, including coronary arteries. Evaluation at earlier time points revealed medial lipid accumulation as a lesion-initiating event. Fluorescently labelled LDL injection followed by confocal microscopy showed increased LDL retention in the medial layer of Ccn2 knockout aortas, likely attributed to marked proteoglycan enrichment of the medial extracellular matrix. Analyses leveraging data from the Athero-Express study cohort indicated relevance of CCN2 in established human lesions, as CCN2 correlated with SMC marker transcripts across 654 transcriptomically profiled carotid plaques. These findings were substantiated through in situ hybridization showing CCN2 expression predominantly in the fibrous cap. CONCLUSIONS: This study identifies CCN2 as a major constituent of the normal artery wall, critical in regulating SMC differentiation and aorta integrity, and possessing a protective role against atherosclerosis development. These findings underscore the need for further investigation into the potential effects of anti-CCN2-based therapies on the vasculature.

5.
Am J Physiol Renal Physiol ; 327(1): F37-F48, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779752

RESUMO

Interleukin (IL)-17A contributes to hypertension in preclinical models. T helper 17 and dendritic cells are activated by NaCl, which could involve the epithelial Na+ channel (ENaC). We hypothesized that the ENaC blocker amiloride reduces plasma IL-17A and related cytokines in patients with hypertension. Concentrations of IL-17A, IFN-γ, TNF, IL-6, IL-1ß, and IL-10 were determined by immunoassays in plasma from two patient cohorts before and after amiloride treatment: 1) patients with type 2 diabetes mellitus (T2DM) and treatment-resistant hypertension (n = 69, amiloride 5-10 mg/day for 8 wk) and 2) patients with hypertension and type 1 diabetes mellitus (T1DM) (n = 29) on standardized salt intake (amiloride 20-40 mg/day, 2 days). Plasma and tissue from ANG II-hypertensive mice with T1DM treated with amiloride (2 mg/kg/day, 4 days) were analyzed. The effect of amiloride and benzamil on macrophage cytokines was determined in vitro. Plasma cytokines showed higher concentrations (IL-17A ∼40-fold) in patients with T2DM compared with T1DM. In patients with T2DM, amiloride had no effect on IL-17A but lowered TNF and IL-6. In patients with T1DM, amiloride had no effect on IL-17A but increased TNF. In both cohorts, blood pressure decline and plasma K+ increase did not relate to plasma cytokine changes. In mice, amiloride exerted no effect on IL-17A in the plasma, kidney, aorta, or left cardiac ventricle but increased TNF in cardiac and kidney tissues. In lipopolysaccharide-stimulated human THP-1 macrophages, amiloride and benzamil (from 1 nmol/L) decreased TNF, IL-6, IL-10, and IL-1ß. In conclusion, inhibition of ENaC by amiloride reduces proinflammatory cytokines TNF and IL-6 but not IL-17A in patients with T2DM, potentially by a direct action on macrophages.NEW & NOTEWORTHY ENaC activity may contribute to macrophage-derived cytokine release, since amiloride exerts anti-inflammatory effects by suppression of TNF and IL-6 cytokines in patients with resistant hypertension and type 2 diabetes and in THP-1-derived macrophages in vitro.


Assuntos
Amilorida , Diabetes Mellitus Tipo 2 , Bloqueadores do Canal de Sódio Epitelial , Hipertensão , Interleucina-17 , Interleucina-6 , Fator de Necrose Tumoral alfa , Amilorida/farmacologia , Amilorida/uso terapêutico , Humanos , Interleucina-17/sangue , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/imunologia , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Hipertensão/tratamento farmacológico , Hipertensão/sangue , Feminino , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Fator de Necrose Tumoral alfa/sangue , Idoso , Camundongos , Canais Epiteliais de Sódio/metabolismo , Canais Epiteliais de Sódio/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Anti-Hipertensivos/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangue
6.
Hypertension ; 81(6): 1308-1319, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563153

RESUMO

BACKGROUND: Abnormalities of resistance arteries may play essential roles in the pathophysiology of aging and hypertension. Deficiency of the vascular extracellular matrix protein MFAP4 (microfibrillar-associated protein 4) has previously been observed as protective against aberrant arterial remodeling. We hypothesized that MFAP4-deficiency would reduce age- and hypertension-dependent arterial changes in extracellular matrix composition and stiffening. METHODS: Mesenteric arteries were isolated from old (20-23 months) littermate Mfap4+/+ and Mfap4-/- mice, and 2-photon excitation microscopy imaging was used to quantify elastin and collagen volumes and dimensions in the vascular wall. Ten-week-old littermate Mfap4+/+ and Mfap4-/- mice were subjected to 20 days of continuous Ang II (angiotensin II) infusion and hypertension was monitored using invasive blood pressure measurements. Arterial stiffness, responses to vascular constrictors, and myogenic tone were monitored using wire- or pressure-myography. Collagen contents were assessed by Western blotting. RESULTS: MFAP4-deficiency significantly increased collagen volume and elastin fragmentation in aged mesenteric arteries without affecting arterial stiffness. MFAP4-deficient mice exhibited reduced diastolic pressure in Ang II-induced hypertension. There was no significant effect of MFAP4-deficiency on mesenteric artery structural remodeling or myogenic tone, although collagen content in mesenteric arteries was tendentially increased in hypertensive Mfap4+/+ mice relative to Mfap4-/- mice. Increased efficacy of vasoconstrictors (phenylephrine, thromboxane) and reduced stiffness were observed in Ang II-treated Mfap4-/- mouse mesenteric arteries in ex vivo myography recordings. CONCLUSIONS: MFAP4-deficiency reduces the elastin/collagen ratio in the aging resistance artery without affecting arterial stiffness. In contrast, MFAP4-deficiency reduces the stiffness of resistance arteries and ameliorates Ang II-induced hypertension.


Assuntos
Envelhecimento , Angiotensina II , Proteínas da Matriz Extracelular , Hipertensão , Artérias Mesentéricas , Resistência Vascular , Rigidez Vascular , Animais , Camundongos , Envelhecimento/fisiologia , Angiotensina II/farmacologia , Pressão Sanguínea/fisiologia , Colágeno/metabolismo , Modelos Animais de Doenças , Elastina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/deficiência , Hipertensão/fisiopatologia , Hipertensão/metabolismo , Hipertensão/genética , Artérias Mesentéricas/fisiopatologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Camundongos Knockout , Resistência Vascular/fisiologia , Rigidez Vascular/fisiologia , Rigidez Vascular/efeitos dos fármacos
7.
Immunobiology ; 229(3): 152797, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518448

RESUMO

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT- 2) inhibitors exert cardiovascular and kidney-protective effects in people with diabetes. Attenuation of inflammation could be important for systemic protection. The lectin pathway of complement system activation is linked to diabetic nephropathy. We hypothesized that SGLT-2 inhibitors lower the circulating level of pattern-recognition molecules of the lectin cascade and attenuate systemic complement activation. METHODS: Analysis of paired plasma samples from the DapKid crossover intervention study where patients with type 2 diabetes mellitus (T2DM) and albuminuria were treated with dapagliflozin and placebo for 12 weeks (10 mg/day, n=36). ELISA was used to determine concentrations of collectin kidney 1 (CL-K1), collectin liver 1 (CL-L1), mannose-binding lectin (MBL), MBL-associated serine protease 2 (MASP-2), the anaphylatoxin complement factor 3a (C3a), the stable C3 split product C3dg and the membrane attack complex (sC5b-9). RESULTS: As published before, dapagliflozin treatment lowered Hba1C from 74 (14.9) mmol/mol to 66 (13.9) mmol/mol (p<0.0001), and the urine albumin/creatinine ratio from 167.8 mg/g to 122.5 mg/g (p<0.0001). Plasma concentrations of CL-K1, CL-L1, MBL, and MASP-2 did not change significantly after dapagliflozin treatment (P>0.05) compared to placebo treatment. The plasma levels of C3a (P<0.05) and C3dg (P<0.01) increased slightly but significantly, 0.6 [0.2] units/mL and 76 [52] units/mL respectively, after dapagliflozin treatment. The C9-associated neoepitope in C5b-9 did not change in plasma concentration by dapagliflozin (P>0.05). CONCLUSION: In patients with type 2 diabetes and albuminuria, SGLT-2 inhibition resulted in modest C3 activation in plasma, likely not driven by primary changes in circulating collectins and not resulting in changes in membrane attack complex. Based on systemic analyses, organ-specific local protective effects of gliflozins against complement activation cannot be excluded.


Assuntos
Albuminúria , Compostos Benzidrílicos , Ativação do Complemento , Diabetes Mellitus Tipo 2 , Glucosídeos , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Compostos Benzidrílicos/uso terapêutico , Albuminúria/tratamento farmacológico , Albuminúria/etiologia , Glucosídeos/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Ativação do Complemento/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Idoso , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/etiologia , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Estudos Cross-Over
10.
Pregnancy Hypertens ; 35: 82-87, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301351

RESUMO

BACKGROUND: Salt (NaCl) promotes T-lymphocyte conversion to pro-inflammatory Th-17 cells in vitro. Interleukin (IL)-17A aggravates hypertension in preeclampsia (PE) models. OBJECTIVES: It was hypothesized that 1) women with PE exhibit increased plasma IL-17A and related cytokines and 2) high dietary salt intake elevates circulating IL-17A in patients with PE compared to women with healthy pregnancy (HP) and non-pregnant (NonP) women. MAIN OUTCOME MEASURES: Plasma concentration of cytokines IL-17A, IFN-γ, IL-10, TNF, IL-6, and IL-1ß in samples from NonP women (n = 13), HP (n = 15), and women with PE (n = 7). STUDY DESIGN: Biobanked samples from a randomized, double-blind, cross-over placebo-controlled dietary intervention study. Participants received a low sodium diet (50-60 mmol NaCl/24 h) for 10 days and were randomly assigned to ingest placebo tablets (low salt intake) or salt tablets (172 mmol NaCl/24 h, high salt intake) for 5 + 5 days. Plasma samples were drawn at baseline and after each diet. RESULTS: While a high salt diet suppressed renin, angiotensin II, and aldosterone levels, it did not affect blood pressure or plasma cytokine concentrations in any group compared to low salt intake. Plasma TNF was significantly higher in PE than in HP and NonP at baseline and after a low salt diet. Plasma IL-6 was significantly higher in PE compared to HP at baseline and NonP at low salt. CONCLUSION: Interleukin-17A and related T-cell and macrophage-cytokines are not sensitive to salt-intake in PE. Preeclampsia is associated with elevated levels of TNF and IL-6 macrophage-derived cytokines. Salt-sensitive changes in systemic IL-17A are less likely to explain hypertension in PE.


Assuntos
Hipertensão , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Cloreto de Sódio na Dieta/efeitos adversos , Citocinas , Cloreto de Sódio , Interleucina-17 , Interleucina-6
11.
Acta Physiol (Oxf) ; 240(3): e14096, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38258597

RESUMO

AIM: Magnesium (Mg2+ ) is a vasorelaxant. The underlying physiological mechanisms driving this vasorelaxation remain unclear. Studies were designed to test the hypothesis that multiple signaling pathways including nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) in endothelial cells as well as Ca2+ antagonization and TRPM7 channels in vascular smooth muscle cells mediate Mg2+ -dependent vessel relaxation. METHODS: To uncover these mechanisms, force development was measured ex vivo in aorta rings from mice using isometric wire myography. Concentration responses to Mg2+ were studied in intact and endothelium-denuded aortas. Key findings were confirmed in second-order mesenteric resistance arteries perfused ex vivo using pressure myography. Effects of Mg2+ on NO formation were measured in Chinese Hamster Ovary (CHO) cells, isolated mesenteric vessels, and mouse urine. RESULTS: Mg2+ caused a significant concentration-dependent relaxation of aorta rings. This relaxation was attenuated significantly in endothelium-denuded aortas. The endothelium-dependent portion was inhibited by NO and cGMP blockade but not by cyclooxygenase inhibition. Mg2+ stimulated local NO formation in CHO cells and isolated mesenteric vessels without changing urinary NOx levels. High extracellular Mg2+ augmented acetylcholine-induced relaxation. SKCa and IKCa channel blockers apamin and TRAM34 inhibited Mg2+ -dependent relaxation. The endothelium-independent relaxation in aorta rings was inhibited by high extracellular Ca2+ . Combined blockade of NO, SKCa , and IKCa channels significantly reduced Mg2+ -dependent dilatation in mesenteric resistance vessels. CONCLUSIONS: In mouse conductance and resistance arteries Mg2+ -induced relaxation is contributed by endothelial NO formation, EDHF pathways, antagonism of Ca2+ in smooth muscle cells, and additional unidentified mechanisms.


Assuntos
Magnésio , Óxido Nítrico , Camundongos , Animais , Cricetinae , Óxido Nítrico/metabolismo , Magnésio/farmacologia , Magnésio/metabolismo , Células CHO , Cricetulus , Células Endoteliais/metabolismo , Endotélio Vascular , Fatores Biológicos/metabolismo , Fatores Biológicos/farmacologia , Artérias Mesentéricas , Vasodilatação , Músculo Liso Vascular/metabolismo
12.
Pflugers Arch ; 476(3): 307-321, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279994

RESUMO

Aldosterone through the mineralocorticoid receptor MR has detrimental effects on cardiovascular disease. It reduces the bioavailability of nitric oxide and impairs endothelium-dependent vasodilatation. In resistance arteries, aldosterone impairs the sensitivity of vascular smooth muscle cells to nitric oxide by promoting the local secretion of histamine which activates H2 receptors. The present experiments tested in vivo and ex vivo the hypothesis that systemic H2-receptor antagonism reduces arterial blood pressure and improves vasodilatation in angiotensin II-induced chronic hypertension. Hypertension was induced by intravenous infusion of angiotensin II (60 ng kg-1 min-1) in conscious, unrestrained mice infused concomitantly with the H2-receptor antagonist ranitidine (27.8 µg kg-1 min-1) or vehicle for 24 days. Heart rate and arterial blood pressure were recorded by indwelling arterial catheter. Resistance (mesenteric) and conductance (aortae) arteries were harvested for perfusion myography and isometric tension recordings by wire myography, respectively. Plasma was analyzed for aldosterone concentration. ANGII infusion resulted in elevated arterial blood pressure and while in vivo treatment with ranitidine reduced plasma aldosterone concentration, it did not reduce blood pressure. Ranitidine improved ex vivo endothelial function (acetylcholine 10-9 to 10-6 mol L-1) in mesenteric resistance arteries. This was abolished by ex vivo treatment with aldosterone (10-9 mol L-1, 1 h). In aortic segments, in vivo ranitidine treatment impaired relaxation. Activation of histamine H2 receptors promotes aldosterone secretion, does not affect arterial blood pressure, and protects endothelial function in conduit arteries but promotes endothelial dysfunction in resistance arteries during angiotensin II-mediated hypertension. Aldosterone contributes little to angiotensin II-induced hypertension in mice.


Assuntos
Aldosterona , Hipertensão , Camundongos , Animais , Angiotensina II/farmacologia , Pressão Arterial , Histamina/farmacologia , Antagonistas dos Receptores H2 da Histamina/efeitos adversos , Ranitidina/efeitos adversos , Óxido Nítrico , Pressão Sanguínea , Endotélio Vascular , Artérias Mesentéricas
13.
J Am Soc Nephrol ; 35(4): 410-425, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38254266

RESUMO

SIGNIFICANCE STATEMENT: Proteinuria predicts accelerated decline in kidney function in CKD. The pathologic mechanisms are not well known, but aberrantly filtered proteins with enzymatic activity might be involved. The urokinase-type plasminogen activator (uPA)-plasminogen cascade activates complement and generates C3a and C5a in vitro / ex vivo in urine from healthy persons when exogenous, inactive, plasminogen, and complement factors are added. Amiloride inhibits uPA and attenuates complement activation in vitro and in vivo . In conditional podocin knockout (KO) mice with severe proteinuria, blocking of uPA with monoclonal antibodies significantly reduces the urine excretion of C3a and C5a and lowers tissue NLRP3-inflammasome protein without major changes in early fibrosis markers. This mechanism provides a link to proinflammatory signaling in proteinuria with possible long-term consequences for kidney function. BACKGROUND: Persistent proteinuria is associated with tubular interstitial inflammation and predicts progressive kidney injury. In proteinuria, plasminogen is aberrantly filtered and activated by urokinase-type plasminogen activator (uPA), which promotes kidney fibrosis. We hypothesized that plasmin activates filtered complement factors C3 and C5 directly in tubular fluid, generating anaphylatoxins, and that this is attenuated by amiloride, an off-target uPA inhibitor. METHODS: Purified C3, C5, plasminogen, urokinase, and urine from healthy humans were used for in vitro / ex vivo studies. Complement activation was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and ELISA. Urine and plasma from patients with diabetic nephropathy treated with high-dose amiloride and from mice with proteinuria (podocin knockout [KO]) treated with amiloride or inhibitory anti-uPA antibodies were analyzed. RESULTS: The combination of uPA and plasminogen generated anaphylatoxins C3a and C5a from intact C3 and C5 and was inhibited by amiloride. Addition of exogenous plasminogen was sufficient for urine from healthy humans to activate complement. Conditional podocin KO in mice led to severe proteinuria and C3a and C5a urine excretion, which was attenuated reversibly by amiloride treatment for 4 days and reduced by >50% by inhibitory anti-uPA antibodies without altering proteinuria. NOD-, LRR- and pyrin domain-containing protein 3-inflammasome protein was reduced with no concomitant effect on fibrosis. In patients with diabetic nephropathy, amiloride reduced urinary excretion of C3dg and sC5b-9 significantly. CONCLUSIONS: In conditions with proteinuria, uPA-plasmin generates anaphylatoxins in tubular fluid and promotes downstream complement activation sensitive to amiloride. This mechanism links proteinuria to intratubular proinflammatory signaling. In perspective, amiloride could exert reno-protective effects beyond natriuresis and BP reduction. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Increased Activity of a Renal Salt Transporter (ENaC) in Diabetic Kidney Disease, NCT01918488 and Increased Activity of ENaC in Proteinuric Kidney Transplant Recipients, NCT03036748 .


Assuntos
Nefropatias Diabéticas , Ativador de Plasminogênio Tipo Uroquinase , Humanos , Camundongos , Animais , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Plasminogênio/metabolismo , Amilorida/farmacologia , Fibrinolisina/metabolismo , Inflamassomos , Camundongos Endogâmicos NOD , Proteinúria/metabolismo , Ativação do Complemento , Anafilatoxinas , Fibrose
15.
Physiol Rep ; 11(22): e15886, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38010195

RESUMO

Perioperative hyponatremia, due to non-osmotic release of the antidiuretic hormone arginine vasopressin, is a serious electrolyte disorder observed in connection with many types of surgery. Since blood loss during surgery contributes to the pathogenesis of hyponatremia, we explored the effect of bleeding on plasma sodium using a controlled hypotensive hemorrhage pig model. After 30-min baseline period, hemorrhage was induced by aspiration of blood during 30 min at mean arterial pressure <50 mmHg. Thereafter, the animals were resuscitated with retransfused blood and a near-isotonic balanced crystalloid solution and monitored for 180 min. Electrolyte and water balances, cardiovascular response, renal hemodynamics, and markers of volume regulation and osmoregulation were investigated. All pigs (n = 10) developed hyponatremia. All animals retained hypotonic fluid, and none could excrete net-free water. Urinary excretion of aquaporin 2, a surrogate marker of collecting duct responsiveness to antidiuretic hormone, was significantly reduced at the end of the study, whereas lysine vasopressin, i.e., the pig antidiuretic hormone remained high. In this animal model, hyponatremia developed due to net positive fluid balance and generation of electrolyte-free water by the kidneys. A decreased urinary aquaporin 2 excretion may indicate an escape from antidiuresis.


Assuntos
Hiponatremia , Animais , Suínos , Hiponatremia/terapia , Aquaporina 2 , Vasopressinas , Hemorragia/complicações , Sódio , Eletrólitos , Água
16.
Immunobiology ; 228(4): 152462, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37406469

RESUMO

INTRODUCTION: The complement system, consisting of more than thirty different soluble and cell-bound proteins, exerts essential functions both in the innate and adaptive immune systems and is believed to be an important contributor to allograft injury in kidney transplantation. The anaphylatoxins C3a and C5a are powerful chemoattractants, recruiting immune effector cells toward the site of complement activation and enhance T-cell response, while C3dg binding to CR2 on B-cells, enhances B-cell immunity at several stages of the B-cell differentiation. Complement split products in plasma and urine could reflect ongoing inflammation and tissue injury. We, therefore, investigated if complement split products increase in plasma and urine in kidney transplant recipients with rejection. METHOD: In this case-control feasibility study, complement factors C3a, C3dg, C4a, and C5a were measured in plasma and C3dg and sC5b-9 associated C9 neoantigen in urine in 15 kidney transplant recipients with rejection (cases) and 15 kidney transplant recipients without (controls). The groups were matched on the type of transplantation and the time from transplantation to sampling. The complement split products were compared (i) between cases and controls and (ii) within the rejection group over time, comparing the measurements at rejection with measurements where the kidney transplant recipients were clinically stable. Possible moderators were explored, and results adjusted accordingly. P values < 0.05 were considered significant. Plasma C3dg was analyzed by immune-electrophoresis, plasma C3a, plasma C4a, and plasma C5a by flow cytometry, and urine C3dg and urine C9neo by ELISA. RESULTS: In plasma, there were no significant differences between the rejection and the control group. However, steroids and pretransplant C3dg levels significantly influenced C3dg. Within the rejection group, plasma C3a and C3dg were significantly higher at the time of rejection compared to the stable phase (p < 0.01). In urine, C3dg/creatinine and C9 neoantigen/creatinine ratios were not different between the rejection and the control group. Urine C3dg/creatinine and urine C9 neoantigen/creatinine ratios correlated to urine albumin and significantly increased after the transplantation (p < 0.001). CONCLUSION: This study shows increased plasma C3a and C3dg in kidney transplant recipients, primarily with T cell mediated rejection. This finding suggests that consecutive measurements of C3a and C3dg in plasma could be applicable to monitor alloreactivity in kidney transplant recipients. Urine complement split products are unsuitable as rejection biomarkers since the permeability of the glomerular filtration barrier strongly influences them. Prospective longitudinal studies on plasma C3a and C3dg dynamics will be needed to validate present findings.


Assuntos
Rejeição de Enxerto , Nefropatias , Humanos , Rejeição de Enxerto/diagnóstico , Creatinina , Estudos Prospectivos , Proteínas do Sistema Complemento/metabolismo , Complicações Pós-Operatórias , Rim , Biomarcadores
17.
J Am Heart Assoc ; 12(3): e027712, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36734354

RESUMO

Background GLP-1 (glucagon-like peptide-1) receptor agonists exert beneficial long-term effects on cardiovascular and renal outcomes. In humans, the natriuretic effect of GLP-1 depends on GLP-1 receptor interaction, is accompanied by suppression of angiotensin II, and is independent of changes in renal plasma flow. In rodents, angiotensin II constricts vasa recta and lowers medullary perfusion. The current randomized, controlled, crossover study was designed to test the hypothesis that GLP-1 increases renal medullary perfusion in healthy humans. Methods and Results Healthy male participants (n=10, aged 27±4 years) ingested a fixed sodium intake for 4 days and were examined twice during a 1-hour infusion of either GLP-1 (1.5 pmol/kg per minute) or placebo together with infusion of 0.9% NaCl (750 mL/h). Interleaved measurements of renal arterial blood flow, oxygenation (R2*), and perfusion were acquired in the renal cortex and medulla during infusions, using magnetic resonance imaging. GLP-1 infusion increased medullary perfusion (32±7%, P<0.001) and cortical perfusion (13±4%, P<0.001) compared with placebo. Here, NaCl infusion decreased medullary perfusion (-5±2%, P=0.007), whereas cortical perfusion remained unchanged. R2* values increased by 3±2% (P=0.025) in the medulla and 4±1% (P=0.008) in the cortex during placebo, indicative of decreased oxygenation, but remained unchanged during GLP-1. Blood flow in the renal artery was not altered significantly by either intervention. Conclusions GLP-1 increases predominantly medullary but also cortical perfusion in the healthy human kidney and maintains renal oxygenation during NaCl loading. In perspective, suppression of angiotensin II by GLP-1 may account for the increase in regional perfusion. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04337268.


Assuntos
Angiotensina II , Peptídeo 1 Semelhante ao Glucagon , Rim , Cloreto de Sódio , Humanos , Masculino , Estudos Cross-Over , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Medula Renal , Perfusão , Circulação Renal , Adulto Jovem , Adulto
18.
Int J Nephrol Renovasc Dis ; 16: 31-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778197

RESUMO

Background: Low-intensity extracorporeal shockwave therapy (LI-ESWT) has been suggested as a treatment for vascular diseases such as ischemic heart disease, diabetic foot ulcers, and erectile dysfunction. Primarily, LI-ESWT is known for its ability to stimulate angiogenesis and activation of stem cells in target tissues. Application of LI-ESWT in chronic progressive renal diseases is a novel area. The aim of the present review was to summarize available data on the effects of LI-ESWT used in the setting of renal diseases. Methods: We systematically searched PubMed, Medline, and Embase databases for relevant studies. Our review included the results from preclinical animal experiments and clinical research. Results: Eleven animal studies and one clinical study were included in the review. In the animal studies, LI-ESWT was used for the treatment of hypertensive nephropathy (n=1), diabetic nephropathy (n=1), or various types of ischemic renal injury (ie, artery occlusion, reperfusion injury) (n=9). The clinical study was conducted in a single-arm cohort as a Phase 1 study with patients having diabetic nephropathy. In animal studies, the application of LI-ESWT was associated with several effects: LI-ESWT led to increased VEGF and endothelial cell proliferation and improved vascularity and perfusion of the kidney tissue. LI-ESWT reduced renal inflammation and fibrosis. LI-ESWT caused only mild side effects in the clinical study, and, similarly, there were no signs of kidney injury after LI-ESWT in the animal studies. Conclusion: LI-ESWT, as a non-invasive treatment, reduces the pathological manifestations (inflammation, capillary rarefaction, fibrosis, decreased perfusion) associated with certain types of renal disease. The efficacy of renal LI-ESWT needs to be confirmed in randomized clinical trials.

19.
Pediatr Res ; 94(4): 1373-1379, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36759747

RESUMO

BACKGROUND: Hospital-acquired hyponatremia remains a feared event in patients receiving hypotonic fluid therapy. Our objectives were to assess post-operative plasma-sodium concentration and to provide a physiological explanation for plasma-sodium levels over time in children with acute appendicitis. METHODS: Thirteen normonatremic (plasma-sodium ≥135 mmol/L) children (8 males), median age 12.3 (IQR 11.5-13.5) years participated in this prospective observational study (ACTRN12621000587808). Urine was collected and analyzed. Blood tests, including renin, aldosterone, arginine-vasopressin, and circulating nitric oxide substrates were determined on admission, at induction of anesthesia, and at the end of surgery. RESULTS: On admission, participants were assumed to be mildly dehydrated and were prescribed 50 mL/kg of Ringer's acetate intravenously followed by half-isotonic saline as maintenance fluid therapy. Blood tests, urinary indices, plasma levels of aldosterone, arginine-vasopressin, and net water-electrolyte balance indicated that participants were dehydrated on admission. Although nearly 50% of participants still had arginine-vasopressin levels that would have been expected to produce maximum antidiuresis at the end of surgery, electrolyte-free water clearance indicated that almost all participants were able to excrete net free water. No participant became hyponatremic. CONCLUSIONS: The use of moderately hypotonic fluid therapy after correction of extracellular fluid deficit is not necessarily associated with post-operative hyponatremia. IMPACT: Our observations show that in acutely ill normonatremic children not only the composition but also the amount of volume infused influence on the risk of hyponatremia. Our observations also suggest that perioperative administration of hypotonic fluid therapy is followed by a tendency towards hyponatremia if extracellular fluid depletion is left untreated. After correcting extracellular deficit almost all patients were able to excrete net free water. This occurred despite nearly 50% of the cohort having high circulating plasma levels of arginine-vasopressin at the end of surgery, suggesting a phenomenon of renal escape from arginine-vasopressin-induced antidiuresis.


Assuntos
Hiponatremia , Criança , Humanos , Masculino , Aldosterona , Arginina , Arginina Vasopressina , Sódio , Vasopressinas , Água , Equilíbrio Hidroeletrolítico , Estudos Prospectivos
20.
Hypertension ; 80(4): 828-836, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36802792

RESUMO

BACKGROUND: Synthetic glucocorticoid exposure in late pregnancy may be associated with higher blood pressure in offspring. We hypothesized that endogenous cortisol in pregnancy relates to offspring blood pressure (OBP). OBJECTIVE: To investigate associations between maternal cortisol status in third trimester pregnancy and OBP. METHODS: We included 1317 mother-child pairs from Odense Child Cohort, an observational prospective cohort. Serum (s-) cortisol and 24-hour urine (u-) cortisol and cortisone were assessed in gestational week 28. Offspring systolic blood pressure and diastolic blood pressure were measured at age 3, 18 months, and 3 and 5 years. Associations between maternal cortisol and OBP were examined by mixed effects linear models. RESULTS: All significant associations between maternal cortisol and OBP were negative. In boys in pooled analyses, 1 nmol/L increase in maternal s-cortisol was associated with average decrease in systolic blood pressure (ß=-0.003 mmHg [95% CI, -0.005 to -0.0003]) and diastolic blood pressure (ß=-0.002 mmHg [95% CI, -0.004 to -0.0004]) after adjusting for confounders. At 3 months of age, higher maternal s-cortisol was significantly associated with lower systolic blood pressure (ß=-0.01 mmHg [95% CI, -0.01 to -0.004]) and diastolic blood pressure (ß=-0.010 mmHg [95% CI, -0.012 to -0.011]) in boys after adjusting for confounders, which remained significant after adjusting for potential intermediate factors. CONCLUSIONS: We found temporal sex dimorphic negative associations between maternal s-cortisol levels and OBP, with significant findings in boys. We conclude that physiological maternal cortisol is not a risk factor for higher blood pressure in offspring up to 5 years of age.


Assuntos
Hipertensão , Hipotensão , Efeitos Tardios da Exposição Pré-Natal , Feminino , Humanos , Masculino , Gravidez , Pressão Sanguínea/fisiologia , Hidrocortisona , Terceiro Trimestre da Gravidez , Estudos Prospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...