Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cancer ; 22(1): 147, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674200

RESUMO

Gastric adenocarcinoma (GAC) is a lethal disease characterized by genomic and clinical heterogeneity. By integrating 8 previously established genomic signatures for GAC subtypes, we identified 6 clinically and molecularly distinct genomic consensus subtypes (CGSs). CGS1 have the poorest prognosis, very high stem cell characteristics, and high IGF1 expression, but low genomic alterations. CGS2 is enriched with canonical epithelial gene expression. CGS3 and CGS4 have high copy number alterations and low immune reactivity. However, CGS3 and CGS4 differ in that CGS3 has high HER2 activation, while CGS4 has high SALL4 and KRAS activation. CGS5 has the high mutation burden and moderately high immune reactivity that are characteristic of microsatellite instable tumors. Most CGS6 tumors are positive for Epstein Barr virus and show extremely high levels of methylation and high immune reactivity. In a systematic analysis of genomic and proteomic data, we estimated the potential response rate of each consensus subtype to standard and experimental treatments such as radiation therapy, targeted therapy, and immunotherapy. Interestingly, CGS3 was significantly associated with a benefit from chemoradiation therapy owing to its high basal level of ferroptosis. In addition, we also identified potential therapeutic targets for each consensus subtype. Thus, the consensus subtypes produced a robust classification and provide for additional characterizations for subtype-based customized interventions.


Assuntos
Adenocarcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Proteômica , Herpesvirus Humano 4 , Genômica , Adenocarcinoma/genética , Adenocarcinoma/terapia , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia
2.
Hepatology ; 76(6): 1634-1648, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35349735

RESUMO

BACKGROUND AND AIMS: Although many studies revealed transcriptomic subtypes of HCC, concordance of the subtypes are not fully examined. We aim to examine a consensus of transcriptomic subtypes and correlate them with clinical outcomes. APPROACH AND RESULTS: By integrating 16 previously established genomic signatures for HCC subtypes, we identified five clinically and molecularly distinct consensus subtypes. STM (STeM) is characterized by high stem cell features, vascular invasion, and poor prognosis. CIN (Chromosomal INstability) has moderate stem cell features, but high genomic instability and low immune activity. IMH (IMmune High) is characterized by high immune activity. BCM (Beta-Catenin with high Male predominance) is characterized by prominent ß-catenin activation, low miRNA expression, hypomethylation, and high sensitivity to sorafenib. DLP (Differentiated and Low Proliferation) is differentiated with high hepatocyte nuclear factor 4A activity. We also developed and validated a robust predictor of consensus subtype with 100 genes and demonstrated that five subtypes were well conserved in patient-derived xenograft models and cell lines. By analyzing serum proteomic data from the same patients, we further identified potential serum biomarkers that can stratify patients into subtypes. CONCLUSIONS: Five HCC subtypes are correlated with genomic phenotypes and clinical outcomes and highly conserved in preclinical models, providing a framework for selecting the most appropriate models for preclinical studies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Masculino , Feminino , Carcinoma Hepatocelular/patologia , beta Catenina/genética , Neoplasias Hepáticas/patologia , Consenso , Proteômica , Genômica , Fenótipo
4.
Cancers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36612182

RESUMO

High metabolic activity is a hallmark of cancers, including hepatocellular carcinoma (HCC). However, the molecular features of HCC with high metabolic activity contributing to clinical outcomes and the therapeutic implications of these characteristics are poorly understood. We aimed to define the features of HCC with high metabolic activity and uncover its association with response to current therapies. By integrating gene expression data from mouse liver tissues and tumor tissues from HCC patients (n = 1038), we uncovered three metabolically distinct HCC subtypes that differ in clinical outcomes and underlying molecular biology. The high metabolic subtype is characterized by poor survival, the strongest stem cell signature, high genomic instability, activation of EPCAM and SALL4, and low potential for benefitting from immunotherapy. Interestingly, immune cell analysis showed that regulatory T cells (Tregs) are highly enriched in high metabolic HCC tumors, suggesting that high metabolic activity of cancer cells may trigger activation or infiltration of Tregs, leading to cancer cells' evasion of anti-cancer immune cells. In summary, we identified clinically and metabolically distinct subtypes of HCC, potential biomarkers associated with these subtypes, and a potential mechanism of metabolism-mediated immune evasion by HCC cells.

6.
Cells ; 9(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32878261

RESUMO

AT-rich interactive domain 1A (ARID1A) is one of the most frequently mutated genes in hepatocellular carcinoma (HCC), but its clinical significance is not clarified. We aimed to evaluate the clinical significance of low ARID1A expression in HCC. By analyzing the gene expression data of liver from Arid1a-knockout mice, hepatic Arid1a-specific gene expression signature was identified (p < 0.05 and 0.5-fold difference). From this signature, a prediction model was developed to identify tissues lacking Arid1a activity and was applied to gene expression data from three independent cohorts of HCC patients to stratify patients according to ARID1A activity. The molecular features associated with loss of ARID1A were analyzed using The Cancer Genome Atlas (TCGA) multi-platform data, and Ingenuity Pathway Analysis (IPA) was done to uncover potential signaling pathways associated with ARID1A loss. ARID1A inactivation was clinically associated with poor prognosis in all three independent cohorts and was consistently related to poor prognosis subtypes of previously reported gene signatures (highly proliferative, hepatic stem cell, silence of Hippo pathway, and high recurrence signatures). Immune activity, indicated by significantly lower IFNG6 and cytolytic activity scores and enrichment of regulatory T-cell composition, was lower in the ARID1A-low subtype than ARID1A-high subtype. Ingenuity pathway analysis revealed that direct upstream transcription regulators of the ARID1A signature were genes associated with cell cycle, including E2F group, CCND1, and MYC, while tumor suppressors such as TP53, SMAD3, and CTNNB1 were significantly inhibited. ARID1A plays an important role in immune activity and regulating multiple genes involved in HCC development. Low-ARID1A subtype was associated with poor clinical outcome and suggests the possibility of ARID1A as a prognostic biomarker in HCC patients.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a DNA/biossíntese , Neoplasias Hepáticas/metabolismo , Fatores de Transcrição/biossíntese , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Genômica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prognóstico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Exp Mol Pathol ; 111: 104319, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31676327

RESUMO

INTRODUCTION: Cirrhosis primes the liver for hepatocellular carcinoma (HCC) development. However, biomarkers that predict HCC in cirrhosis patients are lacking. Thus, we aimed to identify a biomarker directly from protein analysis and relate it with transcriptomic data to validate in larger cohorts. MATERIAL AND METHOD: Forty-six patients who underwent hepatectomy for HCC that arose from cirrhotic liver were enrolled. Reverse-phase protein array and microarray data of these patients were analyzed. Clinical validation was performed in two independent cohorts and functional validation using cell and tissue microarray (TMA). RESULTS: Systematic analysis performed after selecting 20 proteins from 201 proteins with AUROC >70 effectively categorized patients into high (n = 20) or low (n = 26) risk HCC groups. Proteome-derived late recurrence (PDLR)-gene signature comprising 298 genes that significantly differed between high and low risk groups predicted HCC well in a cohort of 216 cirrhosis patients and also de novo HCC recurrence in a cohort of 259 patients who underwent hepatectomy. Among 20 proteins that were selected for analysis, caveolin-1 (CAV1) was the most dominant protein that categorized the patients into high and low risk groups (P < .001). In a multivariate analysis, compared with other clinical variables, the PDLR-gene signature remained as a significant predictor of HCC (HR 1.904, P = .01). In vitro experiments revealed that compared with mock-transduced immortalized liver cells, CAV1-transduced cells showed significantly increased proliferation (P < .001) and colony formation in soft agar (P < .033). TMA with immunohistochemistry showed that tissues with CAV1 expression were more likely to develop HCC than tissues without CAV1 expression (P = .047). CONCLUSION: CAV1 expression predicts HCC development, making it a potential biomarker and target for preventive therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/diagnóstico , Caveolina 1/metabolismo , Proliferação de Células , Cirrose Hepática/complicações , Neoplasias Hepáticas/diagnóstico , Recidiva Local de Neoplasia/diagnóstico , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Caveolina 1/genética , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Recidiva Local de Neoplasia/etiologia , Recidiva Local de Neoplasia/metabolismo , Prognóstico , Análise Serial de Proteínas , Estudos Retrospectivos , Células Tumorais Cultivadas
9.
Biochem Biophys Res Commun ; 511(1): 185-191, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30777332

RESUMO

High metabolic activity, reflected in increased glucose uptake, is one of the hallmarks of many cancers including breast cancer. However, not all cancers avidly take up glucose, suggesting heterogeneity in their metabolic demand. Thus, we aim to generate a genomic signature of glucose hypermetabolism in breast cancer and examine its clinical relevance. To identify genes significantly associated with glucose uptake, gene expression data were analyzed together with the standardized uptake values (SUVmax) of 18F-fluorodeoxy-glucose on positron emission tomography (PET) for 11 breast cancers. The resulting PET signature was evaluated for prognostic significance in four large independent patient cohorts (n = 5417). Potential upstream regulators accountable for the high glucose uptake were identified by gene network analysis. A PET signature of 242 genes was significantly correlated with SUVmax in breast cancer. In all four cohorts, high PET signature was significantly associated with poorer prognosis. The prognostic value of this PET signature was further supported by Cox regression analyses (hazard ratio 1.7, confidential interval 1.48-2.02; P < 0.001). The PET signature was also strongly correlated with previously established prognostic genomic signatures such as PAM50, Oncotype DX, and NKI. Gene network analyses suggested that MYC and TBX2 were the most significant upstream transcription factors in the breast cancers with high glucose uptake. A PET signature reflecting high glucose uptake is a novel independent prognostic factor in breast cancer. MYC and TBX2 are potential regulators of glucose uptake.


Assuntos
Neoplasias da Mama/metabolismo , Glucose/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Feminino , Fluordesoxiglucose F18/metabolismo , Regulação Neoplásica da Expressão Gênica , Glucose/genética , Glicólise , Humanos , Tomografia por Emissão de Pósitrons/métodos , Prognóstico
10.
Exp Mol Med ; 50(11): 1-12, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429453

RESUMO

Recent findings from The Cancer Genome Atlas project have provided a comprehensive map of genomic alterations that occur in hepatocellular carcinoma (HCC), including unexpected mutations in apolipoprotein B (APOB). We aimed to determine the clinical significance of this non-oncogenetic mutation in HCC. An Apob gene signature was derived from genes that differed between control mice and mice treated with siRNA specific for Apob (1.5-fold difference; P < 0.005). Human gene expression data were collected from four independent HCC cohorts (n = 941). A prediction model was constructed using Bayesian compound covariate prediction, and the robustness of the APOB gene signature was validated in HCC cohorts. The correlation of the APOB signature with previously validated gene signatures was performed, and network analysis was conducted using ingenuity pathway analysis. APOB inactivation was associated with poor prognosis when the APOB gene signature was applied in all human HCC cohorts. Poor prognosis with APOB inactivation was consistently observed through cross-validation with previously reported gene signatures (NCIP A, HS, high-recurrence SNUR, and high RS subtypes). Knowledge-based gene network analysis using genes that differed between low-APOB and high-APOB groups in all four cohorts revealed that low-APOB activity was associated with upregulation of oncogenic and metastatic regulators, such as HGF, MTIF, ERBB2, FOXM1, and CD44, and inhibition of tumor suppressors, such as TP53 and PTEN. In conclusion, APOB inactivation is associated with poor outcome in patients with HCC, and APOB may play a role in regulating multiple genes involved in HCC development.


Assuntos
Apolipoproteínas B/genética , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Adulto , Idoso , Animais , Apolipoproteínas B/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Feminino , Redes Reguladoras de Genes , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Transcriptoma
11.
Mol Cancer Res ; 16(11): 1713-1723, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30082483

RESUMO

Hepatocellular carcinoma (HCC) is a heterogeneous disease. Mouse models are commonly used as preclinical models to study hepatocarcinogenesis, but how well these models recapitulate molecular subtypes of human HCC is unclear. Here, integration of genomic signatures from molecularly and clinically defined human HCC (n = 11) and mouse models of HCC (n = 9) identified the mouse models that best resembled subtypes of human HCC and determined the clinical relevance of each model. Mst1/2 knockout (KO), Sav1 KO, and SV40 T antigen mouse models effectively recapitulated subtypes of human HCC with a poor prognosis, whereas the Myc transgenic model best resembled human HCCs with a more favorable prognosis. The Myc model was also associated with activation of ß-catenin. E2f1, E2f1/Myc, E2f1/Tgfa, and diethylnitrosamine (DEN)-induced models were heterogeneous and were unequally split into poor and favorable prognoses. Mst1/2 KO and Sav1 KO models best resemble human HCC with hepatic stem cell characteristics. Applying a genomic predictor for immunotherapy, the six-gene IFNγ score, the Mst1/2 KO, Sav1 KO, SV40, and DEN models were predicted to be the least responsive to immunotherapy. Further analysis showed that elevated expression of immune-inhibitory genes (Cd276 and Nectin2/Pvrl2) in Mst1/2 KO, Sav1 KO, and SV40 models and decreased expression of immune stimulatory gene (Cd86) in the DEN model might be accountable for the lack of predictive response to immunotherapy.Implication: The current genomic approach identified the most relevant mouse models to human liver cancer and suggests immunotherapeutic potential for the treatment of specific subtypes. Mol Cancer Res; 16(11); 1713-23. ©2018 AACR.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas/genética , Animais , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Genômica/métodos , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Prognóstico
12.
Nat Cell Biol ; 19(1): 38-51, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27918549

RESUMO

The understanding of how hypoxia stabilizes and activates HIF1α in the nucleus with related oncogenic signals could revolutionize targeted therapy for cancers. Here, we find that histone H2AX displays oncogenic activity by serving as a crucial regulator of HIF1α signalling. H2AX interacts with HIF1α to prevent its degradation and nuclear export in order to allow successful VHL-independent HIF1α transcriptional activation. We show that mono-ubiquitylation and phosphorylation of H2AX, which are strictly mediated by hypoxia-induced E3 ligase activity of TRAF6 and ATM, critically regulate HIF1α-driven tumorigenesis. Importantly, TRAF6 and γH2AX are overexpressed in human breast cancer, correlate with activation of HIF1α signalling, and predict metastatic outcome. Thus, TRAF6 and H2AX overexpression and γH2AX-mediated HIF1α enrichment in the nucleus of cancer cells lead to overactivation of HIF1α-driven tumorigenesis, glycolysis and metastasis. Our findings suggest that TRAF6-mediated mono-ubiquitylation and subsequent phosphorylation of H2AX may serve as potential means for cancer diagnosis and therapy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinogênese/metabolismo , Histonas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Senescência Celular , Feminino , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Glicólise , Humanos , Imuno-Histoquímica , Camundongos , Metástase Neoplásica , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resultado do Tratamento , Ubiquitina/metabolismo
13.
PLoS One ; 11(4): e0153933, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27100181

RESUMO

Mutational processes and signatures that drive early tumorigenesis are centrally important for early cancer prevention. Yet, to date, biomarkers and risk factors for polyps (adenomas) that inordinately and rapidly develop into colon cancer remain poorly defined. Here, we describe surprisingly high mutational profiles through whole-genome sequence (WGS) analysis in 2 of 4 pairs of benign colorectal adenoma tissue samples. Unsupervised hierarchical clustered transcriptomic analysis of a further 7 pairs of adenomas reveals distinct mutational signatures regardless of adenoma size. Transitional single nucleotide substitutions of C:G>T:A predominate in the adenoma mutational spectrum. Strikingly, we observe mutations in the TGF-ß pathway and CEA-associated genes in 4 out of 11 adenomas, overlapping with the Wnt pathway. Immunohistochemical labeling reveals a nearly 5-fold increase in CEA levels in 23% of adenoma samples with a concomitant loss of TGF-ß signaling. We also define a functional role by which the CEA B3 domain interacts with TGFBR1, potentially inactivating the tumor suppressor function of TGF-ß signaling. Our study uncovers diverse mutational processes underlying the transition from early adenoma to cancer. This has broad implications for biomarker-driven targeting of CEA/TGF-ß in high-risk adenomas and may lead to early detection of aggressive adenoma to CRC progression.


Assuntos
Adenoma/genética , Antígeno Carcinoembrionário/genética , Colo/metabolismo , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Mutação/genética , Fator de Crescimento Transformador beta/genética , Adenoma/metabolismo , Adenoma/patologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Antígeno Carcinoembrionário/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Progressão da Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
14.
J Clin Invest ; 126(2): 527-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26784546

RESUMO

Beckwith-Wiedemann syndrome (BWS) is a human stem cell disorder, and individuals with this disease have a substantially increased risk (~800-fold) of developing tumors. Epigenetic silencing of ß2-spectrin (ß2SP, encoded by SPTBN1), a SMAD adaptor for TGF-ß signaling, is causally associated with BWS; however, a role of TGF-ß deficiency in BWS-associated neoplastic transformation is unexplored. Here, we have reported that double-heterozygous Sptbn1+/- Smad3+/- mice, which have defective TGF-ß signaling, develop multiple tumors that are phenotypically similar to those of BWS patients. Moreover, tumorigenesis-associated genes IGF2 and telomerase reverse transcriptase (TERT) were overexpressed in fibroblasts from BWS patients and TGF-ß-defective mice. We further determined that chromatin insulator CCCTC-binding factor (CTCF) is TGF-ß inducible and facilitates TGF-ß-mediated repression of TERT transcription via interactions with ß2SP and SMAD3. This regulation was abrogated in TGF-ß-defective mice and BWS, resulting in TERT overexpression. Imprinting of the IGF2/H19 locus and the CDKN1C/KCNQ1 locus on chromosome 11p15.5 is mediated by CTCF, and this regulation is lost in BWS, leading to aberrant overexpression of growth-promoting genes. Therefore, we propose that loss of CTCF-dependent imprinting of tumor-promoting genes, such as IGF2 and TERT, results from a defective TGF-ß pathway and is responsible at least in part for BWS-associated tumorigenesis as well as sporadic human cancers that are frequently associated with SPTBN1 and SMAD3 mutations.


Assuntos
Síndrome de Beckwith-Wiedemann/metabolismo , Proteínas de Transporte/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Síndrome de Beckwith-Wiedemann/genética , Fator de Ligação a CCCTC , Proteínas de Transporte/genética , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 11/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Células Hep G2 , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Proteína Smad3/genética , Proteína Smad3/metabolismo , Telomerase/biossíntese , Telomerase/genética , Telomerase/metabolismo , Fator de Crescimento Transformador beta/genética
15.
Sci Signal ; 6(257): ra3, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23300340

RESUMO

K63-linked ubiquitination of Akt is a posttranslational modification that plays a critical role in growth factor-mediated membrane recruitment and activation of Akt. Although E3 ligases involved in growth factor-induced ubiquitination of Akt have been defined, the deubiquitinating enzyme (DUB) that triggers deubiquitination of Akt and the function of Akt deubiquitination remain largely unclear. We showed that CYLD was a DUB for Akt and suppressed growth factor-mediated ubiquitination and activation of Akt. CYLD directly removed ubiquitin moieties from Akt under serum-starved conditions. CYLD dissociated from Akt upon growth factor stimulation, thereby allowing E3 ligases to induce ubiquitination and activation of Akt. CYLD deficiency also promoted cancer cell proliferation, survival, glucose uptake, and, when injected into mice, growth of prostate tumors. Our findings reveal the crucial role of cycles of ubiquitination and deubiquitination of Akt in determining its plasma membrane localization and activation--and further identify CYLD as a molecular switch for these processes.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação/fisiologia , Animais , Membrana Celular/metabolismo , Sobrevivência Celular/genética , Transformação Celular Neoplásica/genética , Enzima Desubiquitinante CYLD , Células HEK293 , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Knockout , Fosforilação , Estatísticas não Paramétricas , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
16.
Mol Cell ; 46(3): 351-61, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22464731

RESUMO

The Mre11/Rad50/NBS1 (MRN) complex is thought to be a critical sensor that detects damaged DNA and recruits ATM to DNA foci for activation. However, it remains to be established how the MRN complex regulates ATM recruitment to the DNA foci during DNA double-strand breaks (DSBs). Here we show that Skp2 E3 ligase is a key component for the MRN complex-mediated ATM activation in response to DSBs. Skp2 interacts with NBS1 and triggers K63-linked ubiquitination of NBS1 upon DSBs, which is critical for the interaction of NBS1 with ATM, thereby facilitating ATM recruitment to the DNA foci for activation. Finally, we show that Skp2 deficiency exhibits a defect in homologous recombination (HR) repair, thereby increasing IR sensitivity. Our results provide molecular insights into how Skp2 and the MRN complex coordinate to activate ATM, and identify Skp2-mediatetd NBS1 ubiquitination as a vital event for ATM activation in response to DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Reparo de DNA por Recombinação , Proteínas Quinases Associadas a Fase S/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular Tumoral , Dano ao DNA , Células HEK293 , Células HeLa , Humanos , Camundongos , Modelos Genéticos , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Ubiquitinação
17.
Blood ; 118(20): 5429-38, 2011 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21931116

RESUMO

Although the maintenance of HSC quiescence and self-renewal are critical for controlling stem cell pool and transplantation efficiency, the mechanisms by which they are regulated remain largely unknown. Understanding the factors controlling these processes may have important therapeutic potential for BM failure and cancers. Here, we show that Skp2, a component of the Skp2 SCF complex, is an important regulator for HSC quiescence, frequency, and self-renewal capability. Skp2 deficiency displays a marked enhancement of HSC populations through promoting cell cycle entry independently of its role on apoptosis. Surprisingly, Skp2 deficiency in HSCs reduces quiescence and displays increased HSC cycling and proliferation. Importantly, loss of Skp2 not only increases HSC populations and long-term reconstitution ability but also rescues the defect in long-term reconstitution ability of HSCs on PTEN inactivation. Mechanistically, we show that Skp2 deficiency induces Cyclin D1 gene expression, which contributes to an increase in HSC cycling. Finally, we demonstrate that Skp2 deficiency enhances sensitivity of Lin(-) Sca-1(+) c-kit(+) cells and leukemia cells to chemotherapy agents. Our findings show that Skp2 is a novel regulator for HSC quiescence and self-renewal and that targeting Skp2 may have therapeutic implications for BM transplantation and leukemia stem cell treatment.


Assuntos
Apoptose/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Leucemia/patologia , Proteínas Quinases Associadas a Fase S/fisiologia , Animais , Antineoplásicos/uso terapêutico , Divisão Celular/fisiologia , Ciclina D1/genética , Ciclina D1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Transplante de Células-Tronco Hematopoéticas , Leucemia/tratamento farmacológico , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Quinases Associadas a Fase S/genética
18.
J Biol Chem ; 286(35): 30806-30815, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21690091

RESUMO

DNA damage response is an important surveillance mechanism used to maintain the integrity of the human genome in response to genotoxic stress. Histone variant H2AX is a critical sensor that undergoes phosphorylation at serine 139 upon genotoxic stress, which provides a docking site to recruit the mediator of DNA damage checkpoint protein 1 (MDC1) and DNA repair protein complex to sites of DNA breaks for DNA repair. Here, we show that monoubiquitination of H2AX is induced upon DNA double strand breaks and plays a critical role in H2AX Ser-139 phosphorylation (γ-H2AX), in turn facilitating the recruitment of MDC1 to DNA damage foci. Mechanistically, we show that monoubiquitination of H2AX induced by RING finger protein 2 (RNF2) is required for the recruitment of active ataxia telangiectasia mutated to DNA damage foci, thus affecting the formation of γ-H2AX. Importantly, a defect in monoubiquitination of H2AX profoundly enhances ionizing radiation sensitivity. Our study therefore suggests that monoubiquitination of H2AX is an important step for DNA damage response and may have important clinical implications for the treatment of cancers.


Assuntos
Dano ao DNA , Histonas/metabolismo , Neoplasias/metabolismo , Ubiquitina/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Reparo do DNA , Histonas/fisiologia , Humanos , Camundongos , Modelos Biológicos , Fosforilação , Radiação Ionizante , Transdução de Sinais , Transfecção , Ubiquitina/metabolismo
19.
DNA Repair (Amst) ; 2(12): 1309-19, 2003 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-14642561

RESUMO

Gene expression and RNA interference phenotypes were investigated for a Caenorhabditis elegans homologue (Ce-RCQ-5) of human RecQ5 protein. Expression of the mRNA was observed by in situ hybridization from earliest embryogenesis and gradually decreased during late embryogenesis. Ce-RCQ-5 was immuno-localized in the nuclei of embryos, germ cells, and oocytes and also in the nuclei of various somatic cells of larvae and adults. Despite ubiquitous expression in postembryonic cells, RCQ-5 protein expression was highest in intestinal cells, which was confirmed by tagging the gene expression with green fluorescence protein. When endogenous Ce-rcq-5 gene expression was inhibited by RNA interference, no clear phenotypes were observed during development. However, C. elegans life span was reduced by 37% due to RNA interference of rcq-5 gene, suggesting its possible role in maintenance of genomic stability, as has been ascribed to other RecQ family DNA helicases. In addition, C. elegans became significantly more sensitive to ionizing radiation after inhibition of rcq-5 gene expression, indicating an involvement of C. elegans RCQ-5 in a cellular response to DNA damage, possibly in DNA repair.


Assuntos
Caenorhabditis elegans/embriologia , DNA Helicases/genética , Embrião não Mamífero/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Animais , Caenorhabditis elegans/genética , DNA Helicases/antagonistas & inibidores , DNA Helicases/imunologia , Embrião não Mamífero/citologia , Biblioteca Gênica , Instabilidade Genômica , Proteínas de Fluorescência Verde , Imunoglobulina G/imunologia , Hibridização In Situ , Larva , Proteínas Luminescentes/metabolismo , Camundongos , Mutação , Sondas RNA , Radiação Ionizante , RecQ Helicases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...