RESUMO
Myopenia is a condition marked by progressive decline of muscle mass and strength and is associated with aging or obesity. It poses the risk of falling, with potential bone fractures, thereby also increasing the burden on family and society. Skeletal muscle wasting is characterized by a reduced number of myoblasts, impaired muscle regeneration and increased muscle atrophy markers (Atrogin-1, MuRF-1). Endothelin-1 (ET-1) is a potent vasoconstrictor peptide. Increased circulating levels of ET-1 is noted with aging and is associated with muscular fibrosis and decline of strength. However, the regulatory mechanism controlling its effect on myogenesis and atrophy remains unknown. In the present study, the effects of ET-1 on myoblast proliferation, differentiation and development were investigated in C2C12 cells and in ET-1-infused mice. The results show that ET-1, acting via ETB receptors, reduced insulin-stimulated cell proliferation, and also reduced MyoD, MyoG and MyHC expression in the differentiation processes of C2C12 myoblasts. ET-1 inhibited myoblast differentiation through ETB receptors and the p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Additionally, ET-1 decreased MyHC expression in differentiated myotubes. Inhibition of proteasome activity by MG132 ameliorated the ET-1-stimulated protein degradation in differentiated C2C12 myotubes. Furthermore, chronic ET-1 infusion caused skeletal muscle atrophy and impaired exercise performance in mice. In conclusion, ET-1 inhibits insulin-induced cell proliferation, impairs myogenesis and induces muscle atrophy via ETB receptors and the p38 MAPK-dependent pathway.
Assuntos
Diferenciação Celular , Proliferação de Células , Endotelina-1 , Desenvolvimento Muscular , Músculo Esquelético , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Endotelina-1/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Mioblastos/metabolismo , Mioblastos/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de SinaisAssuntos
Infecções Oportunistas Relacionadas com a AIDS/complicações , Autoanticorpos/sangue , Infecções por HIV/imunologia , Interferon gama/imunologia , Infecção por Mycobacterium avium-intracellulare/complicações , Fragmentos de Peptídeos/imunologia , Adulto , Antirretrovirais/uso terapêutico , Anticorpos Neutralizantes/sangue , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , MasculinoRESUMO
Target of rapamycin (TOR) signaling is a nutrient-sensing pathway controlling metabolism and lifespan. Although TOR signaling can be activated by a metabolite of diacylglycerol (DAG), phosphatidic acid (PA), the precise genetic mechanism through which DAG metabolism influences lifespan remains unknown. DAG is metabolized to either PA via the action of DAG kinase or 2-arachidonoyl-sn-glycerol by diacylglycerol lipase (DAGL). Here, we report that in Drosophila and Caenorhabditis elegans, overexpression of diacylglycerol lipase (DAGL/inaE/dagl-1) or knockdown of diacylglycerol kinase (DGK/rdgA/dgk-5) extends lifespan and enhances response to oxidative stress. Phosphorylated S6 kinase (p-S6K) levels are reduced following these manipulations, implying the involvement of TOR signaling. Conversely, DAGL/inaE/dagl-1 mutants exhibit shortened lifespan, reduced tolerance to oxidative stress, and elevated levels of p-S6K. Additional results from genetic interaction studies are consistent with the hypothesis that DAG metabolism interacts with TOR and S6K signaling to affect longevity and oxidative stress resistance. These findings highlight conserved metabolic and genetic pathways that regulate aging.